On the Induced Ramsey Number $IR(P_3, H)$

Alexandr Kostochka1 and Naeem Sheikh2

1 University of Illinois, Urbana, IL, 61801 USA, and Institute of Mathematics, Novosibirsk, 630090, Russia
kostochk@math.uiuc.edu

2 University of Illinois, Urbana, IL, 61801 USA
nsheikh@math.uiuc.edu

Summary. The induced Ramsey number $IR(G, H)$ is the least positive integer N such that there exists an N-vertex graph F with the property that for each 2-coloring of its edges with red and blue, either some induced subgraph isomorphic to G has all its edges colored red, or some induced in F subgraph isomorphic to H has all its edges colored blue. In this paper, we study $IR(P_3, H)$ for various H, where P_3 is the path on 3 vertices. In particular, we answer a question by Gorgol and Łuczak by constructing a family $\{H_n\}_{n=1}^\infty$ such that $\limsup_{n \to \infty} \frac{IR(P_3, H_n)}{IR(G, H_n)} > 1$, where $IR_w(G, H)$ is defined almost as $IR(G, H)$, with the only difference that G should be induced only in the red subgraph of F (not in F itself) and H should be induced only in the blue subgraph of F.

AMS Subject Classification. 05D10, 05C35.

Keywords. Induced Ramsey number, weak induced Ramsey number.

1 Introduction

The induced Ramsey number, $IR(G, H)$, is the greatest positive integer N such that for each graph F on at most $N - 1$ vertices, there exists a 2-coloring of its edges with red and blue such that no induced copy of G in F has all its edges red and no induced copy of H in F has all its edges blue. Say that a graph F is an IR-graph for graphs G and H, if for each 2-coloring of edges of F with red and blue, either some induced in F subgraph isomorphic to G has all its edges colored red, or some induced in F subgraph isomorphic to H has all its edges colored blue. In these terms, the induced Ramsey number, $IR(G, H)$, is the least order of an IR-graph for G and H. The fact that an IR-graph exists for each G and H and thus $IR(G, H)$ is finite was proved independently

* The research of the first author was partially supported by the NSF grant DMS-0400498 and grant 03-01-00796 of the Russian Foundation for Basic Research.
by Deuber [Deu75], Erdős et al. [EHP75], and Rödl [Rödl73]. Estimating induced Ramsey numbers of graphs in different classes attracted considerable attention (see, e.g., [Deu75, GŁ02, HNR83, KPR98, LR96, HKL95, Neš95]). In particular, Haxell, Kohayakawa and Łuczak [HKŁ95] showed that the diagonal induced Ramsey numbers for paths and cycles grow linearly in terms of their lengths. However, there are very few exact results.

A characteristic similar to the induced Ramsey number is the weak induced Ramsey number, $IR_w(G, H)$ – the least positive integer N such that there exists an N-vertex graph F with the property that for each 2-coloring of its edges with red and blue, either the red subgraph of F contains an induced (in this red graph) copy of G, or the blue subgraph of F contains an induced (in this blue graph) copy of H. Gorgol and Łuczak [GL02] gave an example of a pair of graphs for which the induced Ramsey number is greater than the weak induced Ramsey number. Namely, they showed that $IR(P_3, P_4) = 7$ and $IR_w(P_3, P_4) = 6$, where P_k is the path with k vertices. They also asked whether there exists a sequence $\{H_n\}_{n=1}^\infty$ of graphs such that for some graph G,

$$\lim_{n\to\infty} \sup \frac{IR(G, H_n)}{IR_w(G, H_n)} > 1. \quad (1)$$

Among other results, Gorgol and Łuczak proved that for every $n \geq 3$,

$$1.5n - 1 \leq IR(P_3, P_n) \leq 2n - 1 \quad \text{and} \quad 4n/3 \leq IR_w(P_3, P_n) \leq 5n/3.$$

In this paper, we estimate $IR(P_3, H)$ for various graphs H. We give the general bound

$$IR(P_3, H) \leq |V(H)| + |E(H)| \quad (2)$$

and show that this bound is sharp when H is the union of complete graphs. Then we refine bound (2) for graphs having vertices with equal neighborhoods and prove that this refined bound is sharp when H is any complete multipartite graph or the disjoint union of complete multipartite graphs. We also answer in the affirmative the above question of Gorgol and Łuczak by constructing a sequence $\{H_n\}_{n=1}^\infty$ of graphs such that (1) holds for them with P_3 in place of G.

The structure of the paper is as follows. In the next section we give upper bounds on $IR(P_3, H)$ and prove that for some graphs they are exact. In the last section we answer the question of Gorgol and Łuczak [GL02].

2 Upper Bounds on $IR(P_3, H)$

Since P_3 is a very simple graph, $IR(P_3, H)$ grows at most linearly with the growth of $|V(H)| + |E(H)|$. A simple construction below proves this.

Theorem 2.1. For every graph H, $IR(P_3, H) \leq |V(H)| + |E(H)|$.
Proof. Given a graph H, we construct the associated graph $F_{H,L}$ as follows. Let $L = (v_1, v_2, \ldots, v_n)$ be a list of all vertices of H written in some order. For $i = 1, 2, \ldots, n$, let $d_{H,L}(v_i)$ be the number of neighbors of v_i in $\{v_1, \ldots, v_{i-1}\}$. The vertex set of $F = F_{H,L}$ is $V(F_{H,L}) = V_1 \cup V_2 \cup \ldots \cup V_n$, where $|V_i| = 1 + d_{H,L}(v_i)$. For every edge (v_i, v_j) in H, we add all the edges between V_i and V_j in $F_{H,L}$. This completes the construction of F. Figure 1 illustrates this construction for C_4 in a particular list.

Note that $|V(F_{H,L})| = |V(H)| + \sum_{i=1}^n d_{H,L}(v_i) = |V(H)| + |E(H)|$.

Claim 2.2. Each red-blue edge coloring of $F_{H,L}$ contains either an induced red copy of P_3 or an induced blue copy of H such that $v_i \in V_i$ for every i.

Proof. We use induction on $n = |V(H)|$. The claim is trivially true for $n = 1$, in which case $H = F_{H,L} = K_1$. Suppose that the claim holds for each graph with less than n vertices. Consider a graph H with n vertices and let $L = (v_1, v_2, \ldots, v_n)$ be a list of all vertices of H. Let f be a red–blue edge coloring of $F_{H,L}$. Consider the graph $H' = H - v_n$ and let L' be the list of vertices of H' obtained from L by deleting v_n. Then $F_{H',L'} = F_{H,L} - V_n$. Let f' be the edge coloring induced in H' by f. Assume that $F_{H,L}$ has no induced red P_3. Then, as a subgraph of $F_{H,L}$, the graph $F_{H',L'}$ also has no induced red P_3. Thus, by the induction hypothesis, $F_{H',L'}$ has an induced blue copy of H' such that $v_i \in V_i$ for $i = 1, \ldots, n-1$. Let v_n have m neighbors in H. Then, $|V_n| = m + 1$.

Let M be the set of m vertices in the induced blue copy \tilde{H} of H' in $F_{H',L'}$ that need a new common neighbor to make the graph H. Each vertex in V_n is a potential candidate for this neighbor. If each of the $m + 1$ vertices in V_n has at least one red edge leading to M, then by pigeonhole principle, some vertex in M has two neighbors in V_n with the corresponding edges being red. Since V_n forms an independent set in $F_{H,L}$, this gives an induced red copy of P_3, a contradiction. Hence, at least one of the vertices in V_n, has all of its edges to M in blue color, thereby giving us an induced blue copy of H with $v_n \in V_n$. This proves the claim and thus the theorem.

The following simple fact observed in [GL02] will be used for lower bounds on $IR(P_3, H)$.
Lemma 2.3. Let F and H be any graphs and f be any red–blue edge coloring of F. If an edge $uv \in E(F)$ is colored red, then at most one of u and v can belong to an induced F blue copy of H. As a consequence, any blue induced copy of H in F contains at most one vertex from each red clique in F.

We now prove that the bound of Theorem 2.1 is sharp for the disjoint unions of complete graphs. The sign $+$ between graphs below denotes the disjoint union of corresponding graphs.

Theorem 2.4. For any positive integers $n_1 \leq \ldots \leq n_m$,

$$IR(P_3, K_{n_1} + K_{n_2} + \ldots + K_{n_m}) = \sum_{i=1}^{m} \frac{n_i(n_i + 1)}{2}.$$

Proof. Let $H = K_{n_1} + K_{n_2} + \ldots + K_{n_m}$. The upper bound follows from Theorem 2.1. Choose an IR-graph F for P_3 and H with fewest vertices.

We will make n_m attempts to color the edges of F. Let f_1 be the coloring of all the edges of F with blue. Since F is an IR-graph for P_3 and H, there is an induced copy H_1 of H. Recall that $|V(H_1)| = n_1 + n_2 + \ldots + n_m$. Color the edges of H_1 with red and all other edges with blue. This is f_2. Again, by the choice, F contains an induced copy H_2 of H. Let $H_{1,2} = H_1 - V(H_2)$. Since all the edges of H_1 are red, by Lemma 2.3, at most one vertex from each clique in H_1 belongs to $V(H_2)$. Hence $|V(H_{1,2})| \geq (n_1 - 1) + \ldots + (n_m - 1)$ and

$$|V(F)| \geq |V(H_{1,2})| + |V(H_2)| \geq \sum_{i=1}^{m} (n_i + (n_i - 1)).$$

Color the edges of H_2 and of $H_{1,2}$ with red and all other edges of F with blue. This is f_3. Again, by the choice, F contains an induced copy H_3 of H. And we do this way m times in total.

In general, after the kth attempt, we have a new blue induced in F copy H_k of H and $k - 1$ partially destroyed copies of H: for $i = 1, \ldots, k - 1$, let $H_{i,k} = H_i - V(H_{i+1}) - V(H_{i+2}) - \ldots - V(H_k)$. The subgraphs $H_{i,k}$ are vertex disjoint from each other and from H_k. Furthermore, by Lemma 2.3, for every $i = 1, \ldots, k - 1$, each clique in $H_{i,k-1}$ has at most one vertex in common with H_k. Therefore,

$$|V(H_{i,k})| \geq \max\{0, n_1 - (k - i)\} + \ldots + \max\{0, n_m - (k - i)\}$$

and hence

$$|V(F)| \geq \sum_{i=1}^{k} \sum_{j=1}^{m} \max\{0, n_j - (k - i)\} = \sum_{j=1}^{m} \sum_{l=0}^{k-1} \max\{0, n_j - l\}. \quad (3)$$

Thus, after the n_mth attempt, (3) yields
\[|V(F)| \geq \sum_{j=1}^{m} \sum_{l=0}^{n_m} \max\{0, n_j - l\} = \sum_{j=1}^{m} \sum_{l=0}^{n_j} (n_j - l) = \sum_{j=1}^{m} \frac{n_j(n_j + 1)}{2}. \]

This proves the theorem.

The bound might be sharp for some other graphs, but it is not sharp for graphs having vertices with the same nontrivial neighborhood, like complete multipartite graphs. For such graphs, we modify the bound.

Let \(H \) be a graph. Say that vertices \(v \) and \(w \) are equivalent (and write \(v \sim w \)) if their neighborhoods are the same. In particular, equivalent vertices are not adjacent. Partition \(V(H) \) into the equivalence classes \(V(H) = W_1 \cup \ldots \cup W_s \) so that \(|W_1| \leq \ldots \leq |W_s| \). Let \(L_W = (v_1, v_2, \ldots, v_n) \) be a list of vertices of \(H \) such that it first encounters vertices in \(W_1 \), then in \(W_2 \), and so on. By the construction, all “degrees to the left” \(d_{H,L,W}(v_i) \) are the same for vertices in the same equivalence class.

Theorem 2.5. For every graph \(H \), and any choice of \(w_j \in W_j \) for \(j = 1, \ldots, s \),

\[IR(P_3, H) \leq |V(H)| + \sum_{j=1}^{s} d_{H,L,W}(w_j). \]

Proof. Given a graph \(H \), we construct the graph \(F' = F'_{H,L,W} \) as follows. The vertex set of \(F' \) is \(V(F'_{H,L,W}) = V_1 \cup V_2 \cup V_3 \cup \ldots \cup V_s \), where \(|V_j| = |W_j| + d_{H,L,W}(w_j) \). For every edge \((w_i, w_j) \) in \(H \), we add all the edges between \(V_i \) and \(V_j \) in \(F'_{H,L,W} \). This construction is illustrated for the graph \(C_4 \) in Fig. 2 (compare with Fig. 1).

\[\begin{array}{c}
\begin{array}{c}
\bullet \quad v_1 \\
\bullet \quad v_2 \\
\bullet \quad v_3 \\
\bullet \quad v_4
\end{array}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
W_1 \\
W_2
\end{array}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\begin{array}{c}
V_1 \\
V_2
\end{array}
\end{array} \]

\[C_4 \quad \text{for} \quad P_3 \quad \text{and} \quad F'_{C_4,L_W} \]

Fig. 2. Another \(IR \)-graph for \(P_3 \) and \(C_4 \)

Note that \(|V(F'_{H,L})| = |V(H)| + \sum_{j=1}^{s} d_{H,L,W}(w_j) \).

Claim 2.6. For each red-blue edge coloring of \(F'_{H,L,W} \), it contains either an induced red copy of \(P_3 \) or an induced blue copy of \(H \) such that for every \(j = 1, \ldots, s \), each \(w_i \in W_j \) belongs to \(V_j \).
Proof. The proof is by induction on s and is very similar to that of Claim 2.2. The claim is trivially true for $s = 1$, in which case H and F' are equal edgeless graphs. Suppose that the claim holds for each graph with less than s equivalence classes. Consider a graph H with s equivalence classes. Let f be a red–blue edge coloring of F'. Consider the graph $H' = H - W_s$ and let L'_{W} be the list of vertices of H' obtained from L_{W} by deleting W_s. Then $F'_{H',L'_{W}} = F'_{H,L_{W}} - W_s$. Assume that $F'_{H,L_{W}}$ has no induced red P_3. Then, as a subgraph of $F'_{H,L_{W}}$, the graph $F'_{H',L'_{W}}$ also has no induced red P_3. Thus, by the induction hypothesis, $F'_{H',L'_{W}}$ has an induced blue copy of H' such that for every $j = 1, \ldots, s - 1$ each $w_i \in W_j$ belongs to V_j. Let w_s have m neighbors in H. Then, $|V_s| = m + |W_s|$. Let M be the set of m vertices in the induced blue copy \tilde{H} of H' in $F'_{H',L'_{W}}$ that need $|W_s|$ new common neighbors to make the graph H. Each of the $m + |W_s|$ vertices in V_s is a potential candidate for such a neighbor. If at least $m + 1$ of the $m + |W_s|$ vertices in V_s have at least one red edge leading to M, then, by pigeonhole principle, some vertex in M has two neighbors in V_s with the corresponding edges being red. Since V_s forms an independent set in $F'_{H,L_{W}}$, this gives an induced red copy of P_3, a contradiction. Hence, at least $|W_s|$ of the vertices in V_s have all their edges to M in blue, thereby giving us an induced blue copy of H with every vertex of W_s in V_s. This proves the claim and thus the theorem.

Remark. For graphs with large equivalence classes, the bound of Theorem 2.5 is significantly better than that of Theorem 2.1. For example, Theorem 2.1 yields $IR(P_3, K_{m,m}) \leq 2m + m^2$, while Theorem 2.5 gives a stronger bound of $IR(P_3, K_{m,m}) \leq 3m$. In fact, the bound of Theorem 2.5 is tight for complete multipartite graphs.

Theorem 2.7. Let $n_1 \leq n_2 \leq \ldots \leq n_s$ be positive integers and $H = K_{n_1,n_2, \ldots, n_s}$. Then

$$IR(P_3, H) = sn_1 + (s - 1)n_2 + \ldots + n_s = \sum_{i=1}^{s} n_i(s + 1 - i).$$

Proof. The upper bound follows from Theorem 2.5. Choose an IR-graph F for P_3 and H with fewest vertices.

We will make s attempts to color the edges of F. Let f_1 be the coloring of all the edges of F with blue. Since F is an IR-graph for P_3 and H, there is an induced copy H_1 of H. Recall that $|V(H_1)| = n_1 + n_2 + \ldots + n_s$. Let H'_1 be a spanning subgraph of H_1 which is the disjoint union of n_1 cliques of size s, and $n_2 - n_1$ cliques of size $(s - 1)$, and so on all the way down to $n_s - n_{s-1}$ cliques of size 1. Color the edges of H'_1 with red and all other edges with blue. This is f_2. Again, by the construction and the choice of F, it contains an induced copy H_2 of H. Let $H_{1,2} = H_1 - V(H_2)$. Since all the edges of H'_1 are red, by Lemma 2.3, the set $V(H'_1) \cap V(H_2)$ is independent in H'_1. Recall that H'_1 has n_s disjoint cliques. Hence $|V(H_{1,2})| \geq n_1 + \ldots + n_{s-1}$ and
\[|V(F)| \geq |V(H_{1,2})| + |V(H_2)| \geq n_{s} + 2 \sum_{i=1}^{s-1} n_{i}. \]

Let \(H'_{2} \) be a subgraph of \(H_{2} \) isomorphic to \(H'_{1} \). Color the edges of \(H'_{2} \) and of \(H_{1,2} \) with red and all other edges of \(F \) with blue. This is \(f_{3} \). Again, \(F \) contains an induced copy \(H'_{3} \) of \(H \). And we do this way \(s \) times in total.

In general, after the \(k \)th attempt, we have a new induced in \(F \) blue copy \(H_{k} \) of \(H \) and \(k - 1 \) partially destroyed copies of \(H \): for \(i = 1, \ldots, k - 1 \), let \(H_{i,k} = H'_{i} - V(H_{i+1}) - V(H_{i+2}) - \ldots - V(H_{k}) \), where \(H'_{i} \) is a spanning subgraph of \(H_{i} \) which is a disjoint union of \(n_{s} \) cliques isomorphic to \(H'_{1} \). The subgraphs \(H_{i,k} \) are vertex disjoint from each other and from \(H_{k} \). Furthermore, by Lemma 2.3, for every \(i = 1, \ldots, k - 1 \), \(H'_{i} - V(H_{i,k}) \) is the union of \(k - i \) independent sets in \(H'_{i} \). By the construction of \(H'_{1} \), such union can contain at most \(n_{s} + n_{s-1} + \ldots + n_{s-k+i+1} \) vertices. Therefore,

\[
|V(H_{i,k})| \geq n_{1} + \ldots + n_{s-k+i} \quad \text{and hence}
\]

\[
|V(F)| \geq \sum_{i=1}^{k} \sum_{j=1}^{s-k+i} n_{j} = n_{s} + 2n_{s-1} + \ldots + (k-1)n_{s-k+2} + k \sum_{i=1}^{s-k+1} n_{i}. \quad (4)
\]

Thus, after the \(s \)th attempt, \((4) \) yields

\[
|V(F)| \geq n_{s} + 2n_{s-1} + \ldots + sn_{1}.
\]

This proves the theorem.

In fact, the bound of Theorem 2.5 is exact for all disjoint unions of multipartite graphs.

Theorem 2.8. Let \(n_{1,1} \leq n_{1,2} \leq \ldots \leq n_{1,s_{1}}, n_{2,1} \leq n_{2,2} \leq \ldots \leq n_{2,s_{2}}, \ldots, n_{m,1} \leq n_{m,2} \leq \ldots \leq n_{m,s_{m}} \) be positive integers. Let \(H \) be the disjoint union of the complete multipartite graphs \(H_{1} = K_{n_{1,1},n_{1,2},\ldots,n_{1,s_{1}}}, H_{2} = K_{n_{2,1},n_{2,2},\ldots,n_{2,s_{2}}}, \ldots, H_{m} = K_{n_{m,1},n_{m,2},\ldots,n_{m,s_{m}}}. \) Then

\[
IR(P_3, H) = \sum_{i=1}^{m} IR(P_3, H_{i}).
\]

The upper bound immediately follows from Theorem 2.5 and the proof of the lower bound practically repeats that of Theorem 2.7 only with more subscripts, so we leave it to the reader.

3 Weak Versus Ordinary

As it was mentioned in the introduction, Gorgol and Łuczak [GL02] proved that \(IR_w(P_3, P_4) = 6 < IR(P_3, P_4) = 7 \). To prove the upper bound on \(IR_w(P_3, P_4) \), they made the following observation.
Claim 3.1. For each red-blue coloring of the edges of the graph \(F_1\) in Fig. 3 such that the red subgraph has no induced \(P_3\), the blue subgraph has an induced path connecting the vertices of degree two. In particular, it contains an induced in blue subgraph \(P_4\) starting at any vertex of degree two.

Fig. 3. The Gorgol–Luczak example

Recall a couple of definitions. Let \(F\) be a graph. For a set \(T \subseteq V(F)\), let
\[
a(F - T) = \text{the number of odd components of } F - T, \text{ i.e. components of odd order,}
\]
and let
\[
def(T) = a(F - T) - |T|
\]
be called the deficiency of \(T\). The deficiency of \(F\) is
\[
def(F) = \max_{W \subseteq V(F)} \{a(F - W) - |W|\}.
\]
Let \(\pi(F)\) denote the size of a maximum matching in \(F\). By Berge–Tutte Formula, \(\def(F) = |V(F)| - 2\pi(F)\).

The main result of this section confirming that (1) holds is the following.

Theorem 3.2. For a positive integer \(k\), let \(H_k\) be the vertex disjoint union of
k paths \(P_4\). Then \(IR_u(P_3, H_k) \leq 6k\) and \(IR(P_3, H_k) \geq 6.1k\). In particular, \(\frac{IR_u(P_3, H_k)}{IR(P_3, H_k)} \geq 1 + 1/60\) for each positive integer \(k\).

Proof. The upper bound on \(IR_u(P_3, H_k)\) is easy: we let \(F_k\) be the disjoint union of \(k\) copies of the 6-vertex graph in Fig. 3. As observed by Gorgol and Luczak, for any red-blue coloring of the edges of \(F_k\), each copy either contains induced in red \(P_3\) or induced in blue \(P_4\). Thus, the whole \(F_k\) either contains induced in red \(P_3\) or induced in blue \(H_k\). The lower bound on \(IR(P_3, H_k)\) needs more work.

For a contradiction, suppose that \(IR(P_3, H_k) = (6 + \varepsilon)k\), where \(\varepsilon < 0.1\) (and possibly is negative). By definition, \(\varepsilon k\) is an integer. Consider a graph \(F\) with \(N = (6 + \varepsilon)k\) vertices such that for each red-blue coloring of its edges, either some induced in \(F\) subgraph isomorphic to \(P_3\) has all its edges colored red, or some induced in \(F\) subgraph isomorphic to \(H_k\) has all its edges colored blue.

Lemma 2.3 implies the next simple observation.

Claim 3.3. \(2k \leq \pi(F) \leq (2 + \varepsilon)k\).
Proof. If $\pi(F) < 2k$, then F itself does not contain H_k which has a matching of size $2k$. Hence, by coloring all the edges of F in blue, we avoid both red P_3 and blue H_k (even non-induced). This contradicts the choice of F.

If F has a matching M with $|M| > (2 + \varepsilon)k$, then we color the edges of M red and all other edges blue. We do not have red P_3 at all. If we have a blue induced copy H' of H_k in F, then by Lemma 2.3, at most $|M|$ vertices incident to the edges of M can belong to $V(H')$. Hence

$$
|V(H') \cup V(M)| = |V(H')| + |V(M)| - |V(H') \cap V(M)| \\
\geq 4k + |M| > 4k + (2 + \varepsilon)k = N,
$$
a contradiction. \qed

Among the sets $W \subset V(F)$ such that $\text{def}(F) = o(F - W) - |W|$ (i.e., among the sets of maximum deficiency), choose a set X of the maximum cardinality. The maximality of cardinality implies that all components of the graph $F - X$ are odd. Then by Claim 3.3,

$$
(2 - \varepsilon)k \leq \text{def}(X) \leq (2 + \varepsilon)k. \quad (5)
$$

Let A_1 denote the set of components of $F - X$ that are cliques and V_1 be the set of vertices in all components in A_1. Similarly, let A_2 denote the set of components of $F - X$ that are not cliques and V_2 be the set of vertices in all components in A_2. Furthermore, let $x = |X|$ and for $i = 1, 2$, let $a_i = |A_i|$ and $v_i = |V_i|$.

Since $V(F) = X \cup V_1 \cup V_2$, we have

$$
x + v_1 + v_2 = (6 + \varepsilon)k. \quad (6)
$$

The following is the left inequality in (5) rewritten using the names of quantities at hand:

$$
(2 - \varepsilon)k \leq a_1 + a_2 - x. \quad (7)
$$

Claim 3.4.

$$
4k \leq 2x + \frac{a_2 + v_2}{2}. \quad (8)
$$

Proof. Color with red all edges in components in A_1 and a maximum matching in each component in A_2. Since X is a set of maximum deficiency, every odd component of $F - X$ (and in particular every component in A_2) has a matching saturating all but one vertex. Color all other edges of F with blue. Since every component of the obtained red graph is a clique, we have no red induced P_3. Hence, by the choice of F we have an induced blue copy H' of H_k. Note that by Lemma 2.3, H' can have at most one vertex in each component in A_1. Moreover, if a P_4 has a vertex w in a component $C \in A_1$, then all neighbors
of w in this P_4 are in X. Hence $V_1 \cup X$ can contain at most $2r$ vertices of H'. Again by Lemma 2.3, each component $C \in A_2$ has at most $(1 + |V(C)|)/2$ vertices of H'. Since $|V(H')| = 4k$, this proves the claim. \hfill \square

If we add to Equation (6) Inequality (8) multiplied by 2 and Inequality (7) multiplied by 3, then we get

\[8k - 4\varepsilon k + v_1 \leq 3a_1 + 4a_2. \]
\[\text{(9)} \]

Since $a_1 \leq v_1$, (9) yields the following:

\[4k - 2\varepsilon k \leq a_1 + 2a_2. \]
\[\text{(10)} \]

\textbf{Claim 3.5.} F has an independent set T with $|T| = 4k - 2\varepsilon k$.

\textbf{Proof.} Compose the independent set T' by taking a vertex from each component in A_1 and taking two non-adjacent vertices from each component in A_2. Then $|T'| = a_1 + 2a_2$ and by (10), this is at least $4k - 2\varepsilon k$. Now, let T be any subset of T' of size $4k - 2\varepsilon k$. \hfill \square

From now on, we fix in F an independent set T with $|T| = 4k - 2\varepsilon k$ and let $S = V(F) - T$. Note that $|S| = 2k + 3\varepsilon k$.

\textbf{Claim 3.6.} The size of a maximum matching in the subgraph $F(S)$ induced by S in F is at most $3\varepsilon k$.

\textbf{Proof.} Suppose that there is a matching M_0 in $F(S)$ with $|M_0| > 3\varepsilon k$. Color the edges of M_0 with red and the remaining edges with blue. By the choice of F, it contains a blue induced subgraph C_0 isomorphic to H_k. Since the independence number of H_k is $2k$, at most $2k$ vertices of C_0 are in T and hence at least $2k$ vertices of C_0 should be in S. But by Lemma 2.3, S contains at most $|S| - |M_0| < (2k + 3\varepsilon k) - 3\varepsilon k = 2k$ vertices of C_0, a contradiction. \hfill \square

If F does not contain induced copies of H_k, then we color all its edges blue and get a coloring contradicting the choice of F. Otherwise, choose an induced copy C_1 of H_k. Denote $B_1 = S \cap V(C_1)$ and $D_1 = T \cap V(C_1)$. Since T is independent, $|B_1| \geq 2k$. Let $|B_1| = 2k + \alpha_1 k$, where $\alpha_1 \geq 0$.

Since H_k is the union of k copies of P_4, it has the unique perfect matching, containing two edges in each copy of P_4. We will call this matching \textit{principal}. Color the edges of the principal matching in C_1 red and all other edges of F blue. By the choice of F, we still have a blue induced subgraph C_2 isomorphic to H_k. Similarly to above, let $B_2 = S \cap V(C_2)$, $D_2 = T \cap V(C_2)$, and $|B_2| = 2k + \alpha_2 k$, where $\alpha_2 \geq 0$.

Observe that each vertex in $V(C_1)$ is incident to a red edge. Therefore by Lemma 2.3, each vertex in $D_1 \cap D_2$, has a neighbor (using a red edge) in $|B_1 - B_2|$. This gives us
\[|D_1 \cap D_2| \leq |B_1 - B_2| \leq |S - B_2| = 2k + 3\varepsilon k - (2k + \alpha_2 k) = 3\varepsilon k - \alpha_2 k \quad (11)\]

and hence

\[|D_1 \cup D_2| = |D_1| + |D_2| - |D_1 \cap D_2| \geq 2k - \alpha_1 k + 2k - \alpha_2 k - (3\varepsilon - \alpha_2)k = k(4 - 3\varepsilon - \alpha_1). \quad (12)\]

Also, we note that

\[|T - (D_1 \cup D_2)| \leq 4k - 2\varepsilon k - k(4 - 3\varepsilon - \alpha_1) = \varepsilon k + \alpha_1 k \quad (13)\]

and

\[|B_1 \cap B_2| \geq |B_1| + |B_2| - |S| = 2k + \alpha_1 k + 2k + \alpha_2 k - k(2 + 3\varepsilon) = (2 + \alpha_1 + \alpha_2 - 3\varepsilon)k. \quad (14)\]

Let \(D'\) be the set of vertices in \(D_1 \cup D_2\) that have two neighbors in \(B_1 \cap B_2\).

Claim 3.7. The subgraph of \(F\) induced by \(D' \cup (B_1 \cap B_2)\) contains a matching \(M\) that saturates \(D'\).

Proof. We first observe that in the graph \(H_k\), every edge connecting \(B_1 \cap B_2\) with \(D_1 \cup D_2\) belongs either to \(E(C_1)\) or to \(E(C_2)\) and each vertex is adjacent to exactly one vertex of degree two. By the definition, each vertex in \(D'\) has two neighbors in \(B_1 \cap B_2\). In particular, this means that it has two neighbors either in \(C_1\) or in \(C_2\). This means that each \(w \in B_1 \cap B_2\) has at most two neighbors in \(D_1 \cup D_2\). Hence, by Hall’s Theorem, the claimed matching \(M\) exists. □

Now we color the edges of the matching \(M\) provided by Claim 3.7 with red and all other edges with blue. By the choice of \(F\), it contains a blue induced subgraph \(C_3\) isomorphic to \(H_k\). We will say that a component of \(C_3\) (which is a \(P_4\)) is in \(N\)-shape, if it has exactly two vertices in \(S\) and these vertices are not adjacent. The illustration in Fig. 4 explains why the name is used. Note that each component of \(C_3\) that is not in \(N\)-shape has at least one edge with both ends in \(S\). If we take an edge with both ends in \(S\) from each such component, they will form a matching of size \(k - y\), where \(y\) is the number of components of \(C_3\) in \(N\)-shape. Then Claim 3.6 yields that \(y \geq k - 3\varepsilon k\).

Let \(B_3 = S \cap V(C_3), D_3 = T \cap V(C_3),\) and \(|B_3| = 2k + \alpha_3 k\). Since \(y \geq k - 3\varepsilon k\), there are at least \(k - 3\varepsilon k\) vertices of \(D_3\) that have two neighbors in \(B_3\) (using blue edges). Let \(Z\) be the set of vertices of \(D_3\) that have two neighbors in \(B_3 \cap B_1 \cap B_2\). Since by (14),

\[|B_3 - (B_1 \cap B_2)| \leq |S - (B_1 \cap B_2)| \leq (2 + 3\varepsilon)k - (2 + \alpha_1 + \alpha_2 - 3\varepsilon)k = (6\varepsilon - \alpha_1 - \alpha_2)k, \quad (15)\]
we have

$$|Z| \geq y - |B_3 - (B_1 \cap B_2)|$$

$$\geq k(1 - 3\varepsilon) - (6\varepsilon - \alpha_1 - \alpha_2)k = k(1 - 9\varepsilon + \alpha_1 + \alpha_2). \quad (16)$$

Observe that $Z \cap (D_1 \cup D_2) = \emptyset$, because every vertex of Z has two neighbors in $B_3 \cap B_1 \cap B_2$, but every vertex of $D_1 \cup D_2$ that has two neighbors in $B_1 \cap B_2$ got one of its incident edges colored red and hence cannot be in C_3. Thus by (13),

$$|Z| \leq |T - (D_1 \cup D_2)| \leq \varepsilon k + \alpha_1 k.$$

Comparing with (16), we get $1 - 9\varepsilon + \alpha_1 + \alpha_2 \leq \varepsilon + \alpha_1$. It follows that, $\varepsilon \geq 1/10$, a contradiction. This completes our proof of the theorem.

Remark. Our graphs H_k are not connected. A family of connected graphs with similar properties is as follows. Let H'_k be obtained from H_k by adding a new vertex z and connecting it by an edge with an end z_i of each of the k copies of P_4 (see Fig. 5). Since H_k is an induced subgraph of H'_k, $IR(P_3, H'_k) \geq IR(P_3, H_k) \geq (6 + \frac{1}{10})k$.

For the upper bound on $IR_w(P_3, H'_k)$, consider the graph F'_k obtained from the graph F_{k+1} by adding a vertex y adjacent to a vertex y_i of degree two in every component C_i, $i = 1, \ldots, k + 1$ of F_{k+1} (see Fig. 5). By construction, F'_k has $6k + 7$ vertices. Let f be a red-blue coloring of the edges of F'_k. If F'_k does not have an induced P_3, at most one edge incident with y is red. The remaining k edges yy_i are blue and by Claim 3.1 inside each of the corresponding k components C_i we have an induced P_4 starting at y_i. Thus, $IR_w(P_3, H'_k) \leq |V(F'_k)| = 6k + 7$ and

$$\lim \sup_{k \to \infty} \frac{IR(P_3, H'_k)}{IR_w(P_3, H'_k)} \geq \lim_{k \to \infty} \frac{6.1k}{6k + 7} = 1 + 1/60.$$

Acknowledgement. We thank Douglas West for helpful comments.
\[H'_k \]

\[F'_k \]

\textbf{Fig. 5.} The graphs \(H'_k \) and \(F'_k \)

\textbf{References}

