1. (a) Orthocenter - the intersection of the altitudes of a triangle.

(b) Isometry - a map from the plane to itself which preserves distances (i.e., $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ and for all x, y, $d(\alpha(x), \alpha(y)) = d(x, y)$).

(c) A linear isometry - an isometry α with the property that $\alpha(0) = 0$.

2. (a) Any vectors X and Y which are perpendicular will work; for example, $X = (1, 0)$ and $Y = (0, 1)$.

(b) No such vectors can exist since the Cauchy-Schwarz inequality tells us $|X \cdot Y| \leq |X||Y|$.

(c) Rotations and central reflections.

3. See page 70 of textbook.

4. (a) Let α be an isometry.

Define the vector A by $A = \alpha(0)$.

Define β by $\beta = T_A \circ \alpha$.

β is an isometry because it is the composition of two isometries.

$\beta(0) = T_A(\alpha(0)) = T_A(A) = A - A = 0$

$T_A \circ \beta = T_A \circ T_A \circ \alpha = \alpha \circ \alpha = \alpha$ \hspace{1cm} \square.
4. (b) \(A = \alpha(0) = -O+2C = Z(1,0) = (2,0) \)
\[
\beta(x) = I_A \circ \alpha(x) = I_A (-x+2C) = \]
\[
= I_A (-x+(2,0)) = -x+(2,0)-(2,0) = -x
\]
So \(A = (2,0), \ \beta(x) = -x \)

5. Let \(\alpha \) be an isometry. By Problem 4, there exist a vector \(A \) and a linear isometry \(\beta \) such that \(\alpha = I_A \circ \beta \).

Let \(l \) be a line. Let \(P \in l \). Then \(P = aX+bY \) where \(a+b=1 \).
Since \(\beta \) is linear,
\[
\beta(P) = \beta(aX+bY) = a\beta(X)+b\beta(Y),
\]
which is a point on \(l \beta(x) \).

So \(\beta \) maps every point on \(l \) to a point on \(l \beta(x) \).

Since \(I_A \) is a translation, it maps \(l \beta(x) \) to a line (\(* \) see proof below). So \(\alpha = I_A \circ \beta \) maps lines to lines.

\(* \) Let \(Q \in l \beta(\cdot) \). Then \(Q = c\beta(x)+d\beta(y) \) for some \(c+d = 1 \). \(I_A(Q) = c\beta(x)+d\beta(y)+A \)
\[
= c(\beta(x)+A) + d(\beta(y)+A) \text{ since } c+d=1.
\]
So \(I_A \) is a point on the line through \(\beta(x)+A \) and \(\beta(y)+A \).
5. Alternate proof.

Let \(x \) be an isometry and let \(lxy \) be a line. Let \(P \) be any point on \(lxy \) between \(x \) and \(y \). We must show that \(x(P) \) is on \(l(x)x(y) \).

Suppose \(x(P) \) is not on \(l(x)x(y) \).

Then, by the triangle inequality,
\[
d(x(x), x(y)) < d(x(x), x(P)) + d(x(P), x(y))
\]

Since \(x \) is isometry,
\[
d(x(x), x(y)) = d(x, y),
\]
\[
d(x(x), x(P)) = d(x, P), \quad d(x(P), x(y)) = d(P, y)
\]

So \(d(x, y) < d(x, P) + d(P, y) \).

However, since \(P \) is on \(lxy \) and between \(x \) and \(y \),
\[
d(x, y) = d(x, P) + d(P, y)
\]
This is a contradiction, so \(x(P) \) is on \(l(x)x(y) \). If \(P \) is on \(lxy \) but not between \(x \) and \(y \), then rename the points and proceed as above.

6. a) T by Proposition 4.10
b) T since \(|V| = \sqrt{V \circ V} \)
c) T by Corollary 3.9
d) F there are infinitely many such \(x \).