Section 4.8 Rotations.

Definition The definition of a rotation agrees with our intuitive understanding. Given a center C and an angle θ (could be negative), $\rho_{c,\theta}$ is rotation with center C by θ degrees counterclockwise.

$\rho_{c,\theta}(C) = C$ and for $X \neq C$,

$X' = \rho_{c,\theta}(X)$ is a point such that $d(C, X') = d(C, X)$ and $\angle (X-C, X'-C) = \theta$

![Diagram of rotation](attachment:image.png)

Theorem 4.27 A rotation is an isometry.

Proof We'll accept this theorem without proof as it is intuitively clear that rotating preserves all distances.

Theorem 4.28 Given a rotation $\rho_{c,\theta}$, let m and n be any two lines through C so that $\angle(m, n) = \frac{\theta}{2}$.

Then $\rho_{c,\theta}^{-1} = \sigma_n \sigma_m$
Proof of Theorem 4.28

We are given a fixed line m and two points C with $d(m, C) = d(C, N)$.

Let M be on m, N on m, so that $d(C, M) = d(C, N)$.

Let $N' = \sigma_m(N)$ and $M' = \sigma_n(M)$.

We will show that $\rho_{C, 0}$ and $\sigma_n \sigma_m$ agree on the three non-collinear points C, M, N', which by Exercise 4.2 will imply $\rho_{C, 0} = \sigma_n \sigma_m$.

C is fixed by both $\rho_{C, 0}$ and $\sigma_n \sigma_m$.

$d(C, M) = d(C, M')$ and $\sigma_n \sigma_m$ preserve angles,

$$\left(M-C, M'-C \right) = \left(M-C, N-C \right) + \left(N-C, M'-C \right) = 90^\circ + 90^\circ = 180^\circ$$

so $\rho_{C, 0} (M) = M'$.

also $\sigma_n \sigma_m (M) = \sigma_n (M) = M'$.

By argument similar to above, $\rho_{C, 0} (N') = N$ and $\sigma_n \sigma_m (N') = \sigma_n (N) = N$.

$\therefore \rho_{C, 0} = \sigma_n \sigma_m$. \qed
Theorem 4.30. An isometry with exactly one fixed point \(C \) is a rotation with center \(C \).

Proof: Theorem 4.28 and Theorem 4.18 \(\blacksquare \).

Theorem 4.29. (This will be needed in the classification theorem for isometries.)

Let \(m, n, p \) be lines which all intersect at a point \(C \). Then there is a line \(g \) through \(C \), so that

\[
T_n \circ T_m \circ T_p = T_g.
\]

Proof. \(T_n \circ T_m \) is a rotation \(p, \theta \), where \(\theta = \alpha L(m, n) \). Let \(g \) be a line through \(C \) such that \(L(p, g) = \theta \).

Then, by Theorem 4.28, \(p, \theta = T_g \circ T_p \).

Since \(p, \theta \) equals both \(T_n \circ T_m \) and \(T_g \circ T_p \),

\[
T_n \circ T_m = T_g \circ T_p \ 	ext{so}
\]

\[
T_n \circ T_m \circ T_p = T_g \circ T_p \circ T_p = T_g \circ I = T_g \ 	ext{\(\blacksquare \).}
\]