7.3.1 In the Klein model, two lines are right-limiting parallels to each other if and only if they approach the same boundary point. So if l is right-limiting to m, then m is right-limiting to l.

7.3.2 If l is right limiting to m and n is right limiting to n, then all three lines approach the same boundary point. Therefore l is also right-limiting to n.

7.3.3 Let m be right limiting to l. Then $r_\pi(l) = l$ and $r_\pi(m)$ is another line, which we denote by n. Since reflection preserves parallelism, n is parallel to l. To show that n is a right-limiting parallel to l, let Q be a point on n. Drop a parallel-freepenpendicular from Q to a point R on l. Let $P = r_\pi(Q)$. Then Q is on m and $QR \perp l$ (reflection preserves angles).
Let l be a line within angle $LRQT$. Then $r_\ell(t)$ is a line within angle $LRPS$. Since m is right-limiting to l, $r_\ell(t)$ intersects l. Therefore t intersects l (since a reflection sends intersecting lines to intersecting lines).

Let w be a line outside $LRQT$. Then $r_\ell(w)$ is outside $LRPS$. Since m is right-limiting to l, $r_\ell(w)$ does not intersect l. Therefore w does not intersect l (since a reflection sends parallel lines to parallel lines).

So n separates lines which intersect l from those which do not, so n is a right-limiting parallel to l.

An o The right omega point of l is the set of all right-limiting parallels to l. The first part shows that r_ℓ maps each of these limiting parallels to
7.3.3 cont'd

another limiting parallel, so it maps the set of right-limiting parallels of \(l \) to itself. This means it fixes the right omega point of \(l \).

7.3.11 Let \(\overline{PQ} \), \(l \), \(\overline{R} \) be as described.

Let \(\overline{PQ'} \) also have length \(h \), let \(l' \) be \(\perp \) to \(\overline{PQ'} \) at \(Q' \), let \(\overrightarrow{P'R'} \) be the limiting parallel to \(l' \) at \(P' \).

This defines two omega triangles \(\triangle PQR \) and \(\triangle P'R'Q' \).

Since \(\overline{PQ} \cong \overline{P'Q'} \) and \(\angle PQS = \angle P'Q'S' = 90^\circ \),

Theorem 7.8 \(\Rightarrow \angle QPS = \angle Q'S'P'S' \).

This is the angle \(\alpha(h) \). It is well defined because it depends only on \(h \), not on the particular segment \(\overline{PQ} \) which is chosen.

7.3.12 Let \(\overline{PQ'} \) have length \(h' \) and find \(Q \) on \(\overline{PQ'} \) so \(\overline{PQ} \) has length \(h \).

Construct \(l \) and limiting parallels \(\overrightarrow{Q'R} \), \(\overrightarrow{Q'R'} \) to \(l \).

Then \(\overrightarrow{QQ'}, \overrightarrow{QR}, \overrightarrow{Q'R'} \) form an omega \(A \). By Exterior \(\perp \) Theorem 7.7, \(\alpha(h) > \alpha(h') \).
Geom Explorer Problems.

1. If you make a large Saccheri quad., you get the summit angles as close as you like to 0°. My picture is poor!

2. If you make a very small Saccheri quad., you get the summit angles as close as you like to 90°.

Note: Summit angles never = 0° or 90°

$0^\circ < \text{summit angle} < 90^\circ$

3. Not such a great picture!

4. From mathworld.wolfram.com:

\[a(h) = 2 \tan^{-1}(e^{-h}) \]

Notice $\lim_{h \to 0} a(h) = 90^\circ$, $\lim_{h \to 0} a(h) = 0^\circ$, the function $a(h)$.

Ok, I just a chart is