Math 385, Section D1 - Test #2 - November 4, 2005

Time: 50 minutes. You may not use any books or notes or calculator. There are 100 points possible. To get full credit, you must show your work.

1. (14 points) Find the solution to the initial value problem

\[y'' - 4y' + 4y = 0, \quad y(0) = 0, \quad y'(0) = 1. \]

characteristic equation \[r^2 - 4r + 4 = 0 \]

\[(r-2)^2 = 0 \quad r = 2, 2 \]

\[y(x) = c_1 e^{2x} + c_2 xe^{2x} \]

\[0 = y(0) = c_1 \quad \text{so} \quad y(x) = c_2 xe^{2x} \]

\[y'(x) = c_2 + 2c_2 xe^{2x} \]

\[1 = y'(0) = c_2. \]

solution: \[y(x) = xe^{2x} \]
2. (12 points) This problem tests your knowledge of how to set up “Undetermined Coefficients.” Set up the appropriate form of a particular solution \(y_p \), then stop there - do not plug in and do not determine the values of the coefficients.

\[
y'' + 9y = x^2 + \sin 3x
\]

characteristic equation \(r^2 + 9 = 0 \)

\[
r = \pm 3i \quad y_c = c_1 \cos 3x + c_2 \sin 3x
\]

\[
y_p(x) = Ax^2 + Bx + C + Dx \cos 3x + Ex \sin 3x
\]
3. (12 points) Use variation of parameters to find a particular solution of

\[y'' - 4y = \tan x. \]

Put your answer in the form \(y_p(x) = \ldots \), but do not try to evaluate the integrals - just leave them as integrals in your answer. You are given the formulas

\[u_1 = -\int \frac{y_0 f}{W} \, dx, \quad u_2 = \int \frac{y_1 f}{W} \, dx. \]

Characteristic equation: \(r^2 - 4 = 0 \)

\(r^2 - 4 = 0 \) \(\Rightarrow r = 2, -2 \)

\(y_1(x) = e^{2x} \), \(y_2(x) = e^{-2x} \)

\(y_1' = 2e^{2x} \), \(y_2' = -2e^{-2x} \)

\[W = y_1 y_2' - y_2 y_1' = -2 - 2 = -4 \]

\(f(x) = \tan x \)

\[y_p = u_1 y_1 + u_2 y_2 \]

\[= -e^{2x} \int \frac{e^{-2x} \tan x}{-4} \, dx + e^{-2x} \int \frac{e^{2x} \tan x}{-4} \, dx \]
4. (12 points) For the eigenvalue problem below, show that $\lambda = 0$ is an eigenvalue and find the associated eigenfunction. Note: you are not being asked to find all the eigenvalues! Just show that $\lambda = 0$ is an eigenvalue.

$$y'' + \lambda y = 0 \quad y(0) = 0, \quad y(1) = y'(1).$$

Let $\lambda = 0$

$$y'' = 0 \quad r^2 = 0 \quad r = 0, 0$$

$$y = c_1 + c_2 x$$

$$0 = y(0) = c_1 \quad \text{so} \quad y = c_2 x$$

$$y(1) = c_2 \quad y'(x) = c_2 \quad \text{so} \quad y'(1) = c_2$$

So for all c_2, $y(1) = y'(1)$.

Therefore $\lambda = 0$ is an eigenvalue with eigenfunction $y(x) = x$.
5. Consider the mass-spring system modelled by

\[x'' + 3x' + 2x = 0 \quad x(0) = 1, \ x'(0) = 0. \]

Note: you are not asked for a solution function - just do as much work as needed to answer the following questions.

(a) (6 points) Is the system overdamped, critically damped, or underdamped? Explain briefly how you know (about 1 sentence).

\[r^2 + 3r + 2 = 0; \ (r+1)(r+2) = 0; \ r = -1, -2. \]

Since there are two real roots (distinct) for the characteristic equation, overdamped.

(b) (6 points) Which of the graphs on the following page is the graph of the position function \(x(t) \)? Explain briefly how you know (about 1 sentence).

A, because it shows decay without oscillation, which corresponds to overdamping.
Graphs for Question 5

A

B

C

D
6. Consider the mass-spring system with forcing function modelled by

\[x'' + 9x = \cos(\omega t) \quad x(0) = 0, \quad x'(0) = 0. \]

Note: you are not being asked to find a solution function.

(a) (6 points) What frequency \(\omega \) in the forcing function will result in pure resonance? Explain briefly (1 sentence).

\[r^2 + 9 = 0 \quad r = \pm 3i \quad \text{The natural frequency of the unforced system is 3 rad/\text{sec}, so the frequency } \omega = 3 \text{ will result in pure resonance.} \]

(b) (6 points) Which of the graphs on the following page is the graph of the position function \(x(t) \) showing pure resonance? Explain briefly (1 sentence).

C. In pure resonance, there are oscillations of ever-increasing amplitude.
Graphs for Question 6

A

B

C

D
7. (13 points) Prove that if \(Y_1(x) \) and \(Y_2(x) \) are both solutions of

\[
y'' + p(x)y' + y = f(x),
\]

then \(Y_1(x) - Y_2(x) \) is a solution of

\[
y'' + p(x)y' + y = 0.
\]

Since \(Y_1, Y_2 \) are solutions of \((*)\),

\[
\begin{align*}
Y_1'' + p(x)Y_1' + Y_1 &= f(x) \\
Y_2'' + p(x)Y_2' + Y_2 &= f(x)
\end{align*}
\]

Then \((Y_1 - Y_2)'' + p(x)(Y_1 - Y_2)' + (Y_1 - Y_2)\)

\[
= Y_1'' - Y_2'' + p(x)Y_1' - p(x)Y_2' + Y_1 - Y_2
\]

\[
= (Y_1'' + p(x)Y_1' + Y_1) - (Y_2'' + p(x)Y_2' + Y_2)
\]

\[
= f(x) - f(x) \quad \text{by equations (a)}
\]

\[
= 0.
\]

Therefore \(Y_1 - Y_2 \) is a solution of \((***)\).
8. (a) (7 points) Define what it means for two functions $f_1(x)$ and $f_2(x)$ to be linearly independent on the interval I.

\[f_1(x) \text{ is not a constant multiple of } f_2(x) \text{ on } I \text{ and } f_2(x) \text{ is not a constant multiple of } f_1(x) \text{ on } I. \]

(b) (6 points) Explain how the Wronskian is used in determining whether two solutions y_1, y_2 of a 2nd order homogeneous linear differential equation are linearly independent or linearly dependent.

If the Wronskian of y_1 and y_2 is zero at every point x, then y_1, y_2 are linearly dependent.

If the Wronskian of y_1 and y_2 is non-zero at every point x, then y_1, y_2 are linearly independent.

(and one of the two above cases must occur.)