Is it an ODE or a PDE? (That is, does it take a derivative with respect to more than one variable?)

ODE

What is the order? (That is, the order of the highest derivative)

First order: \(y' = f(x, y) \)

Is it linear or nonlinear? (usually we assume this to mean linear in \(y \)...) linear: \(y' + p(x)y = g(x) \)

Can you find an integrating factor?

yes

want to multiply entire equation by \(\mu(x) \), and choose \(\mu(x) \) so left side of equation is like the product rule: \(\mu y' + \mu py = (\mu y)' \)...

ODE

PDE You need another class!

Higher than first

Coming Soon (to a lecture near you...)

Is it separable? \(M(x) + N(y)y' = 0 \)

yes

Integrate it!

no

Find \(\psi : \psi_x = M, \psi_y = N \), Solution is \(\psi(x,y) = c \).

Is it exact? \(M_y = N_x \)

yes

Invert it (write in terms of \(dx/dy \), use integrating factors!)

no

Maybe its linear in \(x \)?

yes

Change variables: \(v = y/x \). Now it’s separable!

no

Can you write it as \(y' = f(y/x) \)?

yes

Find \(\mu(x) \) or \(\mu(y) \) to make it exact!

no

Can you make it exact? \(\frac{M_y - N_x}{M} = \text{fn of } x \) or \(\frac{N_y - M_x}{N} = \text{fn of } y? \)

yes

Any other ideas?

yes

Try them!

no

Well Darn. Give up now. (in terms of finding a solution we can write down...)