2. Expected Risk Minimization and Abstract Tools for Uniform Approximation

Assigned reading: Chapters 3-6 of Shalev-Shwartz and Ben-David, *Understanding Machine Learning, from Theory to Algorithms.*

On the VC dimension of thresholded sums of functions.

Let pos map a vector v to the binary vector of the same dimension, such that $\text{pos}(v)_i = 1_{\{v_i \geq 0\}}$. Similarly, given a function $g: \mathbb{Z} \to \mathbb{R}$ let $\text{pos}(g): \mathbb{Z} \to \{0, 1\}$ be defined by $\text{pos}(g)(z) = \text{pos}(g(z))$, and if \mathcal{G} is a family of such functions let $\text{pos}(\mathcal{G}) = \{\text{pos}(g) : g \in \mathcal{G}\}$. Throughout the remainder of this problem, suppose that \mathcal{G} is a linear space of functions on \mathbb{Z}.

A set of real-valued functions ψ_1, \ldots, ψ_m on \mathbb{Z} is said to be linearly independent if the only vector $(c_i : i \in [k])$ such that $\sum_{i=1}^m c_i \psi_i \equiv 0$ on \mathbb{Z} is the zero vector. The (linear) rank of \mathcal{G} is the supremum of all k such that there exist k linearly independent elements of \mathcal{G}.

1. Let m be a finite positive integer. Show that the rank of \mathcal{G} is m if and only if there are m linearly independent functions ψ_1, \ldots, ψ_m in \mathcal{G} such that any $g \in \mathcal{G}$ can be represented as $g(z) = \sum_{i=1}^m c_i \psi_i(z)$ for all $z \in \mathbb{Z}$. (Hint: The set of spanning functions can be selected greedily.)

2. Suppose the rank of \mathcal{G} is finite and equal to m, and suppose ψ_1, \ldots, ψ_m are as in part (a). Show that there exists $\{z_1, \ldots, z_m\}$ such that the $m \times m$ matrix $(\psi_i(z_j))_{1 \leq i, j \leq m}$ has full rank. (Hint: Think greedy again!)

3. Suppose the rank of \mathcal{G} is finite and equal to m. Show that $V(\text{pos}(\mathcal{G})) = m$. Here, V denotes VC dimension applied to sets of binary valued functions, which are equivalent to sets of subsets. (Hint: Since it is shown in the notes that $V(\text{pos}(\mathcal{G})) \leq m$, you only need to establish the reverse inequality. Use part (b).)

4. (VC dimension of Dudley classes) Suppose the rank of \mathcal{G} is finite and equal to m, and let $h : \mathbb{Z} \to \mathbb{R}$, with h not necessarily in \mathcal{G}. Show that $V(\text{pos}(\mathcal{G} + h)) = m$. (Hint: To show $V(\text{pos}(\mathcal{G} + h)) \leq m$, explain how the proof in the notes can be modified to handle nonzero h. For the reverse direction, a modification of part (c) suffices.)

5. Consider the example in the notes, such that \mathcal{C} is the class of closed balls in \mathbb{R}^d. Show that $V(\mathcal{C}) \leq d + 1$. (Hint: Use previous part.)