1. Consider the Markov chain with transition matrix

\[P = \begin{pmatrix} 1 - p_{12} & p_{12} \\ p_{21} & 1 - p_{21} \end{pmatrix}. \]

Compute the invariant distribution for \(P \), and show that \(\pi_1 \) is monotone decreasing in \(p_{12} \) and monotone increasing in \(p_{21} \).

Now consider a three-state “chain” with matrix

\[P = \begin{pmatrix} 1 - p_{12} & p_{12} & 0 \\ p_{21} & 1 - p_{21} - p_{23} & p_{23} \\ 0 & p_{32} & 1 - p_{32} \end{pmatrix}. \]

Compute the invariant distribution for this Markov chain. Make a conjecture for monotonicity that is analogous for the 2 \(\times \) 2 case. Does this still hold here?

2. Consider the two state Markov chain with state \(\{1, 2\} \) and with transition probabilities \(p_{12} = p, p_{21} = q \). Let us assume that \(0 < q < 1 \) is fixed but we can choose \(p \in [0, 1] \) however we like. Moreover, assume that there is a payoff of \(r > 0 \) every time we visit state 2, and a cost of \(c(p) \) every time we visit state 1. Then:

(a) Compute the long-term profit per time step as a function of \(p \). Describe a method to find the optimal choice of \(p \) to maximize profits. Does such an optimal choice always exist?

(b) Assume that the cost function is linear, i.e. that \(c(p) = \alpha p \) for some \(\alpha > 0 \). Show that the optimal choice of \(p \) will lead to a profit-per-step of

\[\left(\frac{r - \alpha q}{1 + q} \right)^+, \]

where we denote \(x^+ := \max\{x, 0\} \).

(c) Assume that the cost function is constant, i.e. \(c(p) = c \) for all \(p \). What is the optimal choice of \(p \)? What is the optimal profit?

3. Here we will prove some useful facts for the proof of the Ergodic Theorem below. Consider any positive recurrent Markov chain \(P \) on a state space \(I \).

- For any \(\epsilon > 0 \), show that there is a finite subset \(J \subseteq I \) such that \(\sum_{i \in J} \pi_i > 1 - \epsilon \).
- Use the fact that \(\pi \) is a distribution to show that, for any subset \(J \subseteq I \),

\[\sum_{i \notin J} |U_i(n) - \pi_i| \leq 2 \sum_{i \notin J} \pi_i + \sum_{i \in J} |U_i(n) - \pi_i|. \]
Hint. First justify, and then use, the facts that \(\sum_{i \in J} \pi_i = 1 - \sum_{i \notin J} \pi_i \) and \(\sum_{i \in J} U_i(n) = 1 - \sum_{i \notin J} U_i(n) \).

Theorem (Ergodic Theorem, for reference, not to prove) If \(P \) is irreducible and positive recurrent with invariant measure \(\pi \), then for any bounded observable \(f: I \to \mathbb{R} \), we have

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(X_k) = \langle \pi, f \rangle, \text{ almost surely.}
\]

4. Recall the explosion time of a CTMC is \(\zeta := \lim_{n \to \infty} J_n \).

 (a) Define a CTMC on a state space \(I \) and a state \(i \in I \) such that \(\mathbb{P}_i(\zeta < \infty) = 1/2 \).

 (b) Generalize the example in part (a) from \(1/2 \) to an arbitrary number \(a \in (0, 1) \).

 (c) Is it possible to define a CTMC and \(i \) with \(\mathbb{P}_i(\zeta < \infty) = a \in (0, 1) \) and \(\mathbb{P}_j(\zeta < \infty) < 1 \) for all \(j \)? Why or why not?

5. For this problem, assume \(T_1, T_2, \ldots, T_n \) are independent RVs and \(T_k \sim \text{Expon}(\lambda_k) \).

 (a) Let \(T := \min_{i=1,\ldots,n} T_i \). Show that \(T \) is exponentially distributed and compute its rate.

 (b) Compute the statistics of \(T_1 + T_2 \) (mean, variance, whole distribution).

 (c) Compute the characteristic function of \(T_k \), \(\varphi(s) = \mathbb{E}[e^{sT_k}] \).