Ramsey-Minimal Saturation Numbers for Matchings
Michael Ferrara1,3,4, Jaehoon Kim2,5 and Elyse Yeager2,3
October 1, 2013

Abstract

Given a family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if no element of \mathcal{F} is a subgraph of G, but for any edge e in G, some element of \mathcal{F} is a subgraph of $G + e$. Let $\text{sat}(n, \mathcal{F})$ denote the minimum number of edges in an \mathcal{F}-saturated graph of order n, which we refer to as the saturation number or saturation function of \mathcal{F}. If $\mathcal{F} = \{F\}$, then we instead say that G is F-saturated and write $\text{sat}(n,F)$.

For graphs G,H_1,\ldots,H_k, we write that $G \rightarrow (H_1,\ldots,H_k)$ if every k-coloring of $E(G)$ contains a monochromatic copy of H_i in color i for some i. A graph G is (H_1,\ldots,H_k)-Ramsey-minimal if $G \rightarrow (H_1,\ldots,H_k)$ but for any $e \in G$, $(G - e) \not\rightarrow (H_1,\ldots,H_k)$. Let $\mathcal{R}_{\text{min}}(H_1,\ldots,H_k)$ denote the family of (H_1,\ldots,H_k)-Ramsey-minimal graphs.

In this paper, motivated in part by a conjecture of Hanson and Toft [Edge-colored saturated graphs, J. Graph Theory 11 (1987), 191–196], we prove that
\[
\text{sat}(n, \mathcal{R}_{\text{min}}(m_1K_2,\ldots,m_kK_2)) = 3(m_1 + \ldots + m_k - k)
\]
for $m_1,\ldots,m_k \geq 1$ and $n > 3(m_1 + \ldots + m_k - k)$, and we also characterize the saturated graphs of minimum size. The proof of this result uses a new technique, iterated recoloring, which takes advantage of the structure of H_i-saturated graphs to determine the saturation number of $\mathcal{R}_{\text{min}}(H_1,\ldots,H_k)$.

Keywords: saturated graph, Ramsey-minimal graph, matching

1 Introduction

All graphs considered in this paper are simple, undirected and finite. For any undefined terminology or notation, please see [7]. Given an edge coloring ϕ of a graph G let G_ϕ denote the edge-colored graph obtained by applying ϕ to G, and let $G_\phi[i]$ denote the spanning subgraph of G_ϕ induced by all edges of color i. When the context is clear, we will simply write G and $G[i]$ in place of the more cumbersome G_ϕ and $G_\phi[i]$.

1Dept. of Mathematical and Statistical Sciences, Univ. of Colorado Denver; michael.ferrara@ucdenver.edu
2Dept. of Mathematics Univ. of Illinois at Urbana–Champaign; \{kim805, yeager2\}@illinois.edu
3Research supported in part by NSF grant DMS 08-38434, “EMSW21-MCTP: Research Experience for Graduate Students”.
4Research supported in part by Simons Foundation Collaboration Grant \#206692.
5Research supported in part by Arnold O. Beckman Research Award of the University of Illinois at Urbana-Champaign.
Given a family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if no element of \mathcal{F} is a subgraph of G, but for any edge e in G, some element of \mathcal{F} is a subgraph of $G + e$. If $\mathcal{F} = \{F\}$, then we say that G is F-saturated. The classical extremal function $\text{ex}(n, \mathcal{F})$ is the maximum number of edges in an \mathcal{F}-saturated graph of order n.

In this paper, we are concerned with $\text{sat}(n, \mathcal{F})$, the minimum number of edges in an \mathcal{F}-saturated graph of order n. We refer to $\text{sat}(n, \mathcal{F})$ as the saturation number or saturation function of \mathcal{F}. This parameter was introduced by Erdős, Hajnal and Moon in [2], wherein they determined $\text{sat}(n, K_t)$ and characterized the unique saturated graphs of minimum size. Here “\lor” denotes the standard graph join.

Theorem 1. If n and t are positive integers such that $n \geq t$, then

$$\text{sat}(n, K_t) = \left(\frac{t - 2}{2}\right) + (t - 2)(n - t - 2).$$

Furthermore, $K_{t-2} \lor \overline{K}_{n-t+2}$ is the unique K_t-saturated graph of order n with minimum size.

Subsequently, $\text{sat}(n, \mathcal{F})$ has been determined for a number of families of graphs and hypergraphs. We refer the interested reader to the dynamic survey of Faudree, Faudree and Schmitt [3], which gives a thorough overview of the area.

For graphs G, H_1, \ldots, H_k, we write that $G \rightarrow (H_1, \ldots, H_k)$ if every k-coloring of $E(G)$ contains a monochromatic copy of H_i in color i for some i. The (classical) Ramsey number $r(H_1, \ldots, H_K)$ is the smallest positive integer n such that $K_n \rightarrow (H_1, \ldots, H_k)$. A graph G is (H_1, \ldots, H_k)-Ramsey-minimal if $G \rightarrow (H_1, \ldots, H_k)$ but for any $e \in G$, $(G - e) \nrightarrow (H_1, \ldots, H_k)$. Let $\mathcal{R}_{\min}(H_1, \ldots, H_k)$ denote the family of (H_1, \ldots, H_k)-Ramsey-minimal graphs.

Here we are interested in the following general problem.

Problem 1. Let H_1, \ldots, H_k be graphs, each with at least one edge. Determine

$$\text{sat}(n, \mathcal{R}_{\min}(H_1, \ldots, H_k)).$$

It is straightforward to prove that $G \rightarrow (H_1, \ldots, H_k)$ if and only if G contains an (H_1, \ldots, H_k)-Ramsey-minimal subgraph. Hence Problem 1 is equivalent to finding the minimum size of a graph G of order n such that there is some k-edge-coloring of G that contains no copy of H_i in color i for any i, yet for any $e \in G$ every k-edge-coloring of $G + e$ contains a monochromatic copy of H_i in color i for some i. We observe as well that

$$\text{sat}(n, \mathcal{R}_{\min}(H, K_2, \ldots, K_2)) = \text{sat}(n, H),$$

so that Problem 1 not only represents an interesting juxtaposition of classical Ramsey theory and graph saturation, but is also a direct extension of the problem of determining $\text{sat}(n, H)$. Problem 1 is inspired by the following 1987 conjecture of Hanson and Toft [4].

Conjecture 1. Let $r = r(K_{t_1}, K_{t_2}, \ldots, K_{t_k})$ be the standard Ramsey number for complete graphs. Then

$$\text{sat}(n, \mathcal{R}_{\min}(K_{t_1}, \ldots, K_{t_k})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r - 2)(n - r + 2) & n \geq r. \end{cases}$$
In [1] it was shown that
\[\text{sat}(n, \mathcal{R}_{\min}(K_3, K_3)) = 4n - 10 \]
for \(n \geq 54 \), thereby verifying the first nontrivial case of Conjecture 1. At this time, however, it seems that a complete resolution of the Hanson-Toft conjecture remains elusive. As such, one goal of the study of Problem 1 is to develop a collection of techniques that might be useful in attacking Conjecture 1.

Here, we solve Problem 1 completely in the case where each \(H_i \) is a matching, and further completely characterize all saturated graphs of minimum size. Specifically, we prove the following.

Theorem 2. If \(m_1, \ldots, m_k \geq 1 \) and \(n > 3(m_1 + \ldots + m_k - k) \), then
\[\text{sat}(n, \mathcal{R}_{\min}(m_1K_2, \ldots, m_kK_2)) = 3(m_1 + \ldots + m_k - k). \]

If \(m_i \geq 3 \) for some \(i \), then the unique saturated graphs of minimum size consist solely of vertex-disjoint triangles and independent vertices. If \(m_i \leq 2 \) for every \(i \), then the graphs achieving equality are unions of edge-disjoint triangles and independent vertices.

As noted in [5], a result of Mader [6], which we utilize below, implies that the unique minimum saturated graph of order \(n \geq 3m - 3 \) for \(H = mK_2 \) is \((m - 1)K_3 \cup (n - 3m + 3)K_1\). Hence, the minimum saturated graphs in Theorem 2 are precisely a union of \(m_iK_2 \)-saturated graphs of minimum size. This provides an interesting contrast to both Conjecture 1 and the main result in [1] which posit and demonstrate, respectively, a stronger relationship between \(r(K_{t_1}, K_{t_2}, \ldots, K_{t_k}) \) and \(\text{sat}(n, \mathcal{R}_{\min}(K_{t_1}, \ldots, K_{t_k})) \).

The proof of Theorem 2 uses **iterated recoloring**, a new technique that utilizes the structure of \(H_i \)-saturated graphs to gain insight into the properties of \(\mathcal{R}_{\min}(H_1, \ldots, H_k) \)-saturated graphs. We describe this approach next.

1.1 Iterated Recoloring

Given graphs \(G, H_1, \ldots, H_{k-1} \) and \(H_k \), a \(k \)-edge coloring \(\phi \) of \(G \) is an \((H_1, \ldots, H_k)\)-coloring if \(G_\phi \) contains no monochromatic copy of \(H_i \) in color \(i \), but for any \(e \in G \) and any \(i \in [k] \), the addition of \(e \) to \(G \) in color \(i \) creates a monochromatic copy of \(H_i \) in color \(i \). Central to our approach here is the following observation.

Observation 1. If \(G \) is an \(\mathcal{R}_{\min}(H_1, \ldots, H_k) \)-saturated graph, then every \(k \)-edge-coloring of \(G \) that contains no monochromatic copy of \(H_i \) in color \(i \) for any \(i \) is an \((H_1, \ldots, H_k)\)-coloring. In particular, \(G \) has at least one \((H_1, \ldots, H_k)\)-coloring.

An \((H_1, \ldots, H_k)\)-coloring of a graph \(G \) is \(i \)-heavy if for any edge \(e \) in \(G \) with color not equal to \(i \), recoloring \(e \) with color \(i \) creates a monochromatic copy of \(H_i \) in color \(i \). The next proposition connects the structure of \(H_i \)-saturated graphs with the monochromatic subgraph \(G[i] \) in an \(i \)-heavy \((H_1, \ldots, H_k)\)-coloring of \(G \).

Lemma 3. If \(G \) is an \(\mathcal{R}_{\min}(H_1, \ldots, H_k) \)-saturated graph and \(\phi \) is an \(i \)-heavy \((H_1, \ldots, H_k)\)-coloring of \(G \) for some \(i \in [k] \), then \(G_\phi[i] \) is \(H_i \)-saturated.
Proof. Throughout the proof, it suffices to treat \(G[i] \) as an uncolored graph. As \(\phi \) is an \((H_1, \ldots, H_k)\)-coloring of \(G \), it follows that \(G[i] \) contains no subgraph isomorphic to \(H_i \). It remains to prove that for any edge \(e \in E(G[i]) \), \(G[i] + e \) has a subgraph isomorphic to \(H_i \).

If \(e \in E(G) - E(G[i]) \), then \(\phi(e) \neq i \). Because \(\phi \) is \(i \)-heavy, changing \(e \) to color \(i \) in \(G_\phi \) creates a copy of \(H_i \) in color \(i \). Therefore, adding \(e \) to \(G[i] \) creates a subgraph isomorphic to \(H_i \). On the other hand, if \(e \in E(G) \), then the fact that \(\phi \) is an \((H_1, \ldots, H_k)\)-coloring of \(G \) implies that adding \(e \) to \(G_\phi \) in color \(i \) creates a copy of \(H_i \) in color \(i \). Consequently, \(H_i \subseteq G[i] + e \).

The general technique is as follows. Starting with an \((H_1, \ldots, H_k)\)-coloring \(\phi \) of an \(\mathcal{R}_{\min}(H_1, \ldots, H_k) \)-saturated graph \(G \), we iteratively recolor edges in \(G_\phi \) to obtain a 1-heavy \((H_1, \ldots, H_k)\)-coloring \(\phi_1 \), and then recolor edges in \(G_{\phi_1} \) to obtain a 2-heavy \((H_1, \ldots, H_k)\)-coloring \(\phi_2 \), and so on until we have successively created \(i \)-heavy \((H_1, \ldots, H_k)\)-colorings \(\phi_i \) for every \(i \in [k] \).

By Lemma 3, the monochromatic subgraph \(G[i] \) corresponding to each \(\phi_i \) is \(H_i \)-saturated. The goal is to then use any knowledge we may have about (uncolored) \(H_i \)-saturated graphs to force additional extra structure within \(G \).

For instance, here we will use the following characterization of large enough \(mK_2 \)-saturated graphs due to Mader [6]. A dominating vertex in a graph \(G \) of order \(n \) is a vertex of degree \(n - 1 \).

Theorem 4. If \(G \) is an \(mK_2 \)-saturated graph of order \(n \geq 2m - 1 \), then:

1. \(G \) is disconnected and every component is an odd clique, or
2. \(G \) has a dominating vertex \(v \) and \(G - v \) is \((m - 1)K_2\)-saturated.

2 Proof of Theorem 2

If \(k = 1 \), the result follows from the traditional saturation number for matchings, given in [5], so we may assume \(k \geq 2 \). Further, as \(\text{sat}(\mathcal{R}_{\min}(K_2, H_1, \ldots, H_k)) = \text{sat}(\mathcal{R}_{\min}(H_1, \ldots, H_k)) \), we may also assume that each \(m_i \geq 2 \). We begin by proving the upper bound in Theorem 2.

Proposition 5. \(\text{sat}(n, \mathcal{R}_{\min}(m_1K_2, \ldots, m_kK_2)) \leq 3(m_1 + \ldots + m_k - k) \) whenever \(n > 3(m_1 + \ldots + m_k - k) \).

Proof. Let \(G \) be the vertex-disjoint union of \((m_1 + \ldots + m_k - k)\) triangles and \(n - 3(m_1 + \ldots + m_k - k) \) independent vertices. We can create an \((m_1K_2, \ldots, m_kK_2)\)-coloring \(\phi \) of \(G \) by coloring the edges of \(m_i - 1 \) triangles with color \(i \), for each \(i \). A monochromatic matching can use at most one edge from each triangle, so for any \(i \), the size of the largest matching in color \(i \) is \(m_i - 1 \).

Note that in any coloring of \(G \) containing no monochromatic \(m_iK_2 \) in color \(i \) for any \(i \), each triangle is monochromatic and each color \(i \) is used in exactly \(m_i - 1 \) triangles. Further, there are at most \(m_i - 1 \) triangles containing an edge of color \(i \), lest there exist an \(i \)-colored \(m_iK_2 \). Therefore, by the pigeonhole principle, the only way, up to isomorphism, to color \(G \) without creating one of the forbidden subgraphs is \(\phi \).

Consequently, for any \(e = uv \) in \(G \), \(G_\phi \) contains a copy of \((m_i - 1)K_2 \) in color \(i \) that is disjoint from \(u \) and \(v \). Given a \(k \)-edge coloring of \(G + e \) in which \(G \) does not contain a copy of \(m_iK_2 \) in color \(i \), it then follows that \(e \) lies in a monochromatic copy of \(m_{\phi(e)}K_2 \). Thus, \(G \) is \(\mathcal{R}_{\min}(H_1, \ldots, H_k) \)-saturated. \(\square \)
We note that if each $m_i = 2$, then there are minimum saturated graphs aside from kK_3. Indeed, let $n \geq 8$ and let G be the disjoint union of K_7 and $n - 7$ isolated vertices. Note K_7 is the edge-disjoint union of seven triangles, so that any (m_1K_2, \ldots, m_7K_2)-coloring necessarily assigns a distinct color to each triangle. Then for any $e \in E(G)$, $G + e \rightarrow (H_1, \ldots, H_k)$, so G is $R_{\min}(H_1, \ldots, H_k)$-saturated.

To prove the lower bound in Theorem 2, we will utilize the iterated recoloring technique described in Section 1.1. Assume that G is an $R_{\min}(m_1K_2, \ldots, m_kK_2)$-saturated graph of order $n > 3(m_1 + \cdots + m_k - k)$ with at most $3(m_1 + \cdots + m_k - k)$ edges. If G has a dominating vertex, then necessarily G is a star of order $3(m_1 + \cdots + m_k - k) + 1$, which is clearly not $R_{\min}(m_1K_2, \ldots, m_kK_2)$-saturated when $k \geq 2$. Hence we may assume that G contains no dominating vertex.

The following claims establish several important properties of G. The first follows immediately from Lemma 3 and the fact that G has no dominating vertex.

Proposition 6. If ϕ is an i-heavy (m_1K_2, \ldots, m_kK_2)-coloring of G, then $G[i]$ is the disjoint union of odd cliques.

Next we show that no component of any $G[i]$ arising from an (m_1K_2, \ldots, m_kK_2)-coloring can have a cut edge.

Proposition 7. If ϕ is an (m_1K_2, \ldots, m_kK_2)-coloring of G, then each component of $G[i]$ is 2-edge-connected. In particular, each component C of $G[i]$ has at least $|V(C)|$ edges.

Proof. Suppose ϕ is an (m_1K_2, \ldots, m_kK_2)-coloring of G and that C is a component of $G[i]$ with cut-edge uv. As G_ϕ contains no m_i-matching in color i, every $(m_i - 1)$-matching assigned color i in G_ϕ necessarily uses either u or v. Let $C = uv = C_1 \cup C_2$ for disjoint subgraphs C_1 and C_2 of C with $u \in C_1$ and $v \in C_2$.

Because G has no dominating vertex, there exist (not necessarily distinct) vertices x and y such that $ux, vy \in E(G)$. By the saturation of G, if we extend ϕ to $G + ux$ or $G + vy$ by assigning $\phi(ux) = i$ or $\phi(vy) = i$, respectively, then we create an m_i-matching in color i. Let M_u be an m_i-matching in color i in $G + ux$ that uses n_1 edges from $C_1 - u$ and n_2 edges from C_2. Then M_u restricted to G gives an $(m_i - 1)$-matching that does not use u, and so uses v. Indeed, any matching on C_2 that has n_2 edges must use v.

Now let M_v be an m_i-matching in color i in $G + vy$. M_v restricted to G does not use v, so $C_2 - v$ contributes at most $n_2 - 1$ edges to M_v. Then C_1 contributes at least $n_1 + 1$ edges. Now, if we take the matching formed by restricting M_u to C_1 and M_u to $G - (C_2 \cup \{x\})$, then G has a matching in color i with at least $M_v[|G| - (|V(C_2) \cup \{x\}|) + n_2 = m_i$ edges, a contradiction.

The assertion that C has at least as many edges as vertices then follows from the fact that C has no leaves.

Let ϕ be an (H_1, \ldots, H_k)-coloring of a graph G. An edge e in G is inflexible if changing the color of e to any $j \neq \phi(e)$ creates a monochromatic copy of H_j. The next proposition follows immediately from Proposition 7.

Proposition 8. If ϕ is an (m_1K_2, \ldots, m_kK_2)-coloring of G, and H is a component of some $G[i]$ that is isomorphic to a triangle, then every edge of H is inflexible.
Let ϕ be an (m_1K_2, \ldots, m_kK_2)-coloring of G, and let C be a component of $G_\phi[i]$. If ψ is a coloring of G obtained from ϕ by iteratively recoloring edges of G in a manner such that each successive coloring is an (m_1K_2, \ldots, m_kK_2)-coloring, then we say that ψ is obtained from ϕ by flexing, or that we flex ϕ to ψ. In particular, it is always possible to flex to an i-heavy (m_1K_2, \ldots, m_kK_2)-coloring of G from any other (m_1K_2, \ldots, m_kK_2)-coloring of G.

Proposition 9. Let ϕ be an (m_1K_2, \ldots, m_kK_2)-coloring of G, and let C be a component of $G_\phi[i]$. If ψ is obtained from ϕ by flexing, then $V(C)$ induces a component of $G_\psi[i]$.

Proof. Suppose that there is some edge e such that recoloring e causes the order of C to increase or decrease in $G[i]$. If recoloring e to color i causes the order of C to increase, then e is necessarily a cut-edge in $G[i]$. On the other hand, if recoloring e causes the order of C to decrease, then prior to recoloring, e was a cut-edge in $G[i]$. In either case, we have contradicted Proposition 7, and the proposition follows by induction. □

Let ϕ be an (m_1K_2, \ldots, m_kK_2)-coloring of G and flex ϕ to a 1-heavy (m_1K_2, \ldots, m_kK_2)-coloring ϕ_1. For $2 \leq i \leq k$, flex ϕ_{i-1} to an i-heavy (m_1K_2, \ldots, m_kK_2)-coloring ϕ_i. Consider then the nontrivial components of $G_{\phi_i}[i]$, all of which are odd cliques by Proposition 6. In particular, suppose that these components have order $2x + 1$ for $1 \leq j \leq \ell$. Then, as ϕ_1 is an (m_1K_2, \ldots, m_kK_2)-coloring, we have that $x_1 + \cdots + x_\ell = m_i - 1$. Further, since the components of G_i do not change order via flexing, a component C of order $2x + 1$ in $G_{\phi_j}[i]$ must have a maximum matching of size x.

Propositions 6 and 9 imply that a set X of vertices in G induces a component of $G_{\phi_i}[i]$ if and only if X induces a component of $G_{\phi_j}[i]$ for all $i, j \in [k]$. This, in turn, implies that if ϕ' and ϕ'' are i-heavy colorings obtained via flexing from ϕ, then $G_{\phi'}[i] = G_{\phi''}[i]$. This yields the following proposition.

Proposition 10. Let C be a component of $G_{\phi_i}[i]$. Then there are at least $|V(C)|$ edges in C such that $\phi_j(e) = i$ for all $1 \leq j \leq k$.

Proof. Let $S \subset E(C)$ be those edges e in C such that $\{\phi_j(e) : 1 \leq j \leq k\} = \{i\}$ and suppose that $|S| < |V(C)|$. Every edge of C that is not in S lies in some component C' of $G_{\phi_j}[j]$ for some $j \neq i$. Iteratively recoloring each $e \notin S$ with any such j does not create a matching of size m_i in color ℓ for any ℓ, as all edges colored ℓ lie within some component of $G_{\phi_j}[\ell]$. However, this means that at most $|S| < |V(C)|$ edges of C remain colored with color i, contradicting Proposition 9. □

Our final proposition shows that no edge in G receives more than two colors under ϕ_1, \ldots, ϕ_k.

Proposition 11. If Q is a component of $G_{\phi_i}[i]$ on $2m + 1$ vertices, with $m \geq 1$, then any edge of Q is assigned at most 2 colors under ϕ_1, \ldots, ϕ_k. Furthermore, if Q is a triangle, then every edge of Q is inflexible in every G_{ϕ_i}.

Proof. Note first that if $m = 1$, so that Q is a triangle, then this is the result of Proposition 8. Hence we will assume that $m \geq 2$.

Suppose Q is a component of $G_{\phi_1}[1]$, and an edge $uv \in E(Q)$ appears in components Q_2 and Q_3 of $G_{\phi_2}[2]$ and $G_{\phi_3}[3]$, respectively. Recall that by Proposition 6, Q_2 and Q_3 are necessarily odd cliques.

Let $V(Q) - \{u, v\} = \{x_1, x_2, \ldots, x_{2m-1}\}$. First, we define a coloring ψ' of Q.

6
\[\psi'(e) := \begin{cases} 2 & \text{if } e = x_2x_j \\ 3 & \text{if } e = x_3x_j \text{ with } j \neq 2 \\ 1 & \text{otherwise} \end{cases} \]

Now:
\[\phi(e) := \begin{cases} \psi'(e) & \text{if } e \notin Q \cup Q_2 \cup Q_3 \\ 1 & \text{if } e \text{ is in } Q \cup Q_2 \cup Q_3 \text{ and incident to } u \text{ or } v. \end{cases} \]

In this coloring, the \((2m - 3)\) vertices \(\{x_1, x_4, \ldots, x_{2m-1}\}\) form a clique of color 1, contributing at most \(m - 2\) edges to any matching in color 1. Further, edges incident to \(u\) or \(v\) also contribute at most two matching edges, so any matching in color 1 has at most \(m\) edges with an endpoint in \(Q\). As Proposition 9 implies that the other \(\ell\) nontrivial components of \(G_\emptyset[1] - V(Q)\) are odd cliques with total order \(2m_1 - 2m + \ell - 2\), the maximum size of a matching with color 1 in \(G_\emptyset\) is \(m_1 - 1\).

Let \(Q_2\) have \(2n_2 + 1\) vertices, and let \(Q_3\) have \(2n_3 + 1\) vertices. Note that in \(G_{\phi_1}\), \(Q_2\) contributes \(n_2\) edges to any maximum monochromatic matching of color 2 and \(Q_3\) contributes \(n_3\) edges to any maximum monochromatic matching of color 3. As we have recolored all edges in \(Q \cup Q_2 \cup Q_3\) that are incident to \(u\) or \(v\) with color 1, for color \(i \in \{2, 3\}\), \(Q_i - u - v\) contains a matching of size \(n_i - 1\). One more edge of color \(i\) incident with \(x_i\) completes a matching of size at most \(n_i\) in \(Q \cup Q_2 \cup Q_3\). Outside \(Q \cup Q_1 \cup Q_2\), \(\psi = \phi\), so \(\psi\) is a \((H_1, \ldots, H_k)\)-coloring.

If \(x\) is a vertex in \(G\) that is not adjacent to \(u\), then adding the edge \(ux\) to \(G\) in color 1 does not increase the size of a maximum 1-colored matching. Thus \(G\) is not \(\mathcal{R}_\min(m_1K_2, \ldots, m_kK_2)\)-saturated, a contradiction. \(\square\)

We are now ready to prove Theorem 2.

Proof. Let \(G\) and \(\phi_1, \ldots, \phi_k\) be as given above, and further assume that
\[|E(G)| = \text{sat}(n, \mathcal{R}_\min(m_1K_2, \ldots, m_kK_2)) \leq 3(m_1 + \cdots + m_k - k). \]

For each \(i\), we let \(Q_{i,1}, \ldots, Q_{i,p_i}\) be the (clique) components of \(G_{\phi_i}[i]\), and suppose that each \(Q_{i,j}\) has \(2t_{i,j} + 1\) vertices. Recall that \(\sum_{j=1}^{p_i} t_{i,j} = m_i - 1\).

For any \(e \in E(G)\), we define \(w(e) = |\{\phi_i(e) : 1 \leq i \leq k\}|\). That is, \(w(e)\) is the number of colors assigned to \(e\) by the heavy colorings \(\phi_1, \ldots, \phi_k\). Note
\[|E(G)| = \sum_{i=1}^{k} \sum_{e \in G_{\phi_i}[i]} \frac{1}{w(e)}. \]

By Proposition 11, \(w(e) \leq 2\) for every edge of \(G\). Further, by Proposition 10, \(w(e) = 1\) for at least \(|V(Q)|\) edges of \(Q\). Therefore,
\[|E(G)| = \sum_{i=1}^{k} \sum_{e \in G[i]} \frac{1}{w(e)} \geq \sum_{i=1}^{k} \sum_{j=1}^{p_i} \left((2t_{i,j} + 1) + \frac{1}{2} \left(\frac{(2t_{i,j} + 1)}{2} - (2t_{i,j} + 1) \right) \right) \geq \sum_{i=1}^{k} \sum_{j=1}^{p_i} 3t_{i,j} = \sum_{i=1}^{k} 3(m_i - 1) = 3(m_1 + \ldots + m_k - k). \] (1)

We therefore conclude that

\[sat(n, \mathcal{R}_{\text{min}}(m_1K_2, \ldots, m_kK_2)) = 3(m_1 + \ldots + m_k) - k. \]

Additionally, equality holds in all equations above, leading us to conclude that every component of every \(G_{\phi_i}[j] \) is a triangle. By Proposition 8, also every component of every \(G_{\phi_i}[j] \) is a triangle.

It remains only to show that if \(m_i \geq 3 \) for at least one \(i \), then \(G \) consists of triangles that are vertex disjoint. Suppose not. Then there exists at least one "bow-tie" \(B \): a subgraph of \(G \) consisting of two triangles that share one vertex. We can create an \((H_1, \ldots, H_k)\)-coloring \(\phi \) of \(G \) by assigning color \(i \) to \(m_i - 1 \) of the edge-disjoint triangles in a triangle decomposition of \(G \). Let \(\phi \) be a such a coloring, in which both triangles of \(B \) are assigned color \(i \). If we flex \(\phi \) to be \(i \)-heavy, then Proposition 6 implies that the vertices of \(B \) must lie in a clique on at least five vertices. However, as equality holds throughout (1) and \(\phi \) was selected arbitrarily, each component of \(G[i] \) under any valid coloring is a triangle, a contradiction. \qed

References

