HOMEWORK 2: Complex Manifolds

Questions

1. Let X be a complex manifold and L be a holomorphic line bundle on X. We assume that there exist a holomorphic line bundle K on X and an isomorphism $K^\otimes 2 \cong L$. Assume we are given a non-zero holomorphic section σ of L. We denote by $\Sigma \subset L$ the image of σ.

(a) Show that the map

$$\phi : K \to L, \quad (x, \tau) \to (x, \tau^2)$$

is a proper holomorphic map.

If this map is well defined, then it is holomorphic since locally it’s the map $(x, \tau) \to (x, \tau^2)$, and we know that the identity map as well as $f(\tau) = \tau^2$ are holomorphic. Thus it suffices to prove that this map is well-defined.

Let κ_{jk} be the transition functions for K relative to an open cover \{U_j\}, so that the κ_{jk} are holomorphic functions on $U_j \cap U_k$. Since $K^\otimes 2 \cong L$, we can take $\lambda_{jk} = \kappa_{jk}^2$ as the transition functions for L. Locally over U_j, we can identify K and L with $U_j \times \mathbb{C}$. Using these local trivializations, we write $\phi(x, \tau) = (x, \tau^2)$ and check that these local descriptions glue together properly. We have to show that the following diagram commutes

$$\begin{array}{ccc}
U_j \cap U_k \times \mathbb{C} & \xrightarrow{(\text{id}, \kappa_{jk})} & U_j \cap U_k \\
\phi \downarrow & & \downarrow \phi \\
U_j \cap U_k \times \mathbb{C} & \xrightarrow{(\text{id}, \lambda_{jk})} & U_j \cap U_k \times \mathbb{C}
\end{array}$$

which is easily checked.

To prove that ϕ is proper, it suffices to prove that the preimage of a compact set $C \subset L$ is compact. We choose a sequence $\{y_n\}$ in $\phi^{-1}(C)$ and show that it has a limit point in $\phi^{-1}(C)$.

We have the sequence $\{\phi(y_n)\}$ in C. By compactness of C, we can replace the $\{y_n\}$ by an infinite subsequence such that $\{\phi(y_n)\}$ converges, and each of the $\phi(y_n)$ as well as its limit lie in one of the open sets in our local trivialization of L, which we identify with $U_i \times \mathbb{C}$. Writing $\phi(y_n) = (x_n, \rho_n) \in U_i \times \mathbb{C}$, we have a limit $\{(x_n, \rho_n)\} \to (x, \rho) \in C \cap (U_i \times \mathbb{C})$. Then the sequence $\{\rho_n\}$ is bounded. Since $y_n = (x_n, \pm \sqrt{\rho_n})$ for some choice of square root, the sequence $\pm \sqrt{\rho_n}$ is also bounded, hence has a convergent subsequence. This gives a corresponding convergent subsequence of $\{y_n\}$, which must converge to $(x, \pm \sqrt{\rho})$ for one of the two square roots of ρ.

Since $\phi(x, \pm \sqrt{\rho}) = (x, \rho) \in C$, we have that $(x, \pm \sqrt{\rho}) \in \phi^{-1}(C)$, as required.

(b) Show that $Y = \phi^{-1}(\Sigma)$ is smooth if and only if R is smooth.

We begin by looking at the definition of Y. Let the dimension of X be n, and on patch U_j we have local coordinates (x_1, \ldots, x_n). So on this patch, the section σ is defined to be a function of (x_1, \ldots, x_n). As a result, Y is defined to be the zero locus of $f : U_j \times \mathbb{C} \to \mathbb{C}$ with

$$f(x_1, \ldots, x_n, \tau) = \tau^2 - \sigma(x_1, \ldots, x_n).$$

Y is well defined inside K with the same argument in previous part, thus we need to see when $f^{-1}(0)$ smooth.

We need to find smoothness on the given point $p_0 = (z_1, \ldots, z_n, \tau_0) \in f^{-1}(0)$. This is divided into 2 cases:
(1) If $\sigma(z_1, \ldots, z_n) \neq 0$, we get $\tau_0 \neq 0$, thus $\frac{\partial f}{\partial \tau} = 2\tau$ is nonzero on a small neighborhood of p_0. By the implicit function theorem, τ is locally a holomorphic function of (x_1, \ldots, x_n) and thus $f^{-1}(0)$ is smooth near p_0, since it’s just the graph of a holomorphic function.

(2) If $\sigma(z_1, \ldots, z_n) = 0$ we know that $\tau_0 = 0$ and we can’t use the implicit function theorem for τ as the partial derivative 2τ is not invertible near τ_0.

We should now look at all $\frac{\partial f}{\partial x_l}$, for $1 \leq l \leq n$. If $\frac{\partial f}{\partial x_l}(z_1, \ldots, z_n) = 0$ for all l, then $p_0 = (z_1, \ldots, z_n)$ is the singularity for R and $f^{-1}(0)$ is singular at p_0 as well.

On the other hand, if p_0 is not a singularity, there exist one m such that $\frac{\partial \sigma}{\partial x_m}(z_1, \ldots, z_n) \neq 0$. Now the Jacobian $\frac{\partial \sigma}{\partial x_m}$ is nonzero near a neighborhood of p_0. By using implicit function theorem on x_m we know that x_m is locally a holomorphic function of $(x_l)_{l \neq m}$ and τ, and thus $f^{-1}(0)$ is smooth at p_0.

(c) Show that when R is smooth, $\phi : Y \to \Sigma \cong X$ is ramified exactly along $\phi^{-1}(R) \cong R$. Show that the fibers $\phi^{-1}(x)$ consists of 2 distinct points when $x \notin R$.

The image Σ is locally equal to $g^{-1}(0)$, where $g : U_j \times \mathbb{C} \to \mathbb{C}$ by $g(x_1, \ldots, x_n, \rho) = \rho - \sigma(x_1, \ldots, x_n)$.

$\phi^{-1}(R) \cong R$ since $\phi^{-1}(R)$ is defined locally by $y^2 = \sigma(x_1, \ldots, x_n) = 0$ while R is defined locally as $\sigma(x_1, \ldots, x_n) = 0$. Also when $x \notin R$, $\sigma(x) \neq 0$ and thus we’ll have two solutions for $y^2 = \sigma(x)$, i.e. the fiber has two points.

It remains to show that the ramification locus is R. We recall what is the ramification locus defined in homework 1. It’s defined to be the place where $d\phi$ is not surjective.

As a map between $\phi : K \to L$, we have $d\phi(\frac{\partial}{\partial x_j}) = \frac{\partial}{\partial x_j} g$, and $d\phi(\frac{\partial}{\partial \tau}) = 2\tau \frac{\partial}{\partial \tau}$.

Now we restrict Y to the locus $f^{-1}(0)$ and restrict Σ to $g^{-1}(0)$ and calculate there.

We first look at the basis for holomorphic tangent bundle of $g^{-1}(0)$. Since

$$\left(\frac{\partial}{\partial x_l} - \frac{\partial \sigma}{\partial x_l} \frac{\partial}{\partial \rho}\right) g = 0,$$

we know that $(\frac{\partial}{\partial x_l} - \frac{\partial \sigma}{\partial x_l} \frac{\partial}{\partial \rho})_{1 \leq l \leq n}$ is a spanning set for $T \Sigma$ locally.

For TY, if $\sigma(z_1, \ldots, z_n) \neq 0$ locally near $p = (z_1, \ldots, z_n, \tau_0)$, we could find a local chart where $\tau \neq 0$ and use the spanning set $\{2\tau \frac{\partial}{\partial x_l} - \frac{\partial \sigma}{\partial x_l} \frac{\partial}{\partial \tau}\}_{1 \leq l \leq n}$. Note that

$$d\phi \left(2\tau \frac{\partial}{\partial x_l} - \frac{\partial \sigma}{\partial x_l} \frac{\partial}{\partial \tau}\right) = 2\tau \left(\frac{\partial}{\partial x_l} - \frac{\partial \sigma}{\partial x_l} \frac{\partial}{\partial \rho}\right)$$

So when τ is nonzero, this map is an isomorphism between $n-$vector spaces.

If $\sigma(z_1, \ldots, z_n) = 0$, and since R is not singular, we could find locally an m such that $\frac{\partial \sigma}{\partial x_m}$ is non-vanishing, thus we have the spanning set $\{\frac{\partial}{\partial x_l} + \frac{\partial \sigma}{\partial x_l} \frac{\partial}{\partial x_m}\}_{l \neq m}$ as well as $\frac{\partial}{\partial \tau} - \frac{\partial \sigma}{\partial x_m} \frac{\partial}{\partial x_m}$.

But now

$$d\phi \left(\frac{\partial}{\partial \tau} - \frac{2\tau}{\partial \sigma/\partial x_m} \frac{\partial}{\partial x_m}\right) = 2\tau \left(\frac{\partial}{\partial \rho} + \frac{1}{\partial \sigma/\partial x_m} \frac{\partial}{\partial x_m}\right) = 0$$

when $\tau = 0$.

This happens exactly when $\sigma(z_1, \ldots, z_n) = 0$, and so $d\phi$ isn’t an isomorphism exactly when $\sigma(x_1, \ldots, x_m) = 0$, i.e. $x \in R$.

2. Let X be a compact complex curve and let f be a non-constant meromorphic function on X.

(a) Show that we can view f as a holomorphic map from X to \mathbb{P}^1.

We define $\tilde{f} : X \to \mathbb{P}^1$ to be $\tilde{f}(x) = [f(x) : 1]$ if $f(x) \in \mathbb{C}$ and $\tilde{f}(x) = [1 : 0]$ if x is a pole of f.

Now we need to show that it’s a holomorphic map to \mathbb{P}^1.
For x such that $f(x) \in \mathbb{C}$, of course locally it’s a holomorphic map to \mathbb{P}^1, since in the chart $\mathbb{C} \subset \mathbb{P}^1$, the function and the map to \mathbb{P}^1 have identical descriptions. So it suffices to show that when x is a pole of f, then $f(z)$ is a holomorphic map near x.

In the chart of \mathbb{P}^1 at $[1,0]$, the mapping is described by the function $1/f(z)$, so it suffices to prove that $1/f(z)$ is locally a holomorphic function. In a local coordinate z on X centered at x (which means that x corresponds to $z = 0$), we can write $f(z) = z^{-k}h(z)$ for some $k \geq 1$ and holomorphic function $h(z)$ with $h(0) \neq 0$. Then $1/f(z) = z^k/h(z)$. We can shrink the coordinate neighborhood of x if necessary that $h(z)$ has no zeros. Then $1/h(z)$ is holomorphic, hence $f(z)$ is a holomorphic map near x as well.

(b) Let t be a point of \mathbb{P}^1 ($t \neq \infty$) and let D be a disk in \mathbb{P}^1 centered at t. Using exercise 3(c) of chapter 1, show that

$$n_t = \int_{f^{-1}(\partial D)} \frac{1}{2\pi i} \frac{df}{f-t}$$

For each point t and we let $f^{-1}(t) = \{x_i\mid i \in I\}$. We first claim that I is a finite set. This is because if it’s infinite and since X is compact, we could find an accumulation point and by the same argument in homework 1, problem 3(a), we know that this is not possible since it would imply that $f(x) = t$ is a constant function.

Now we see that at each preimage x_i, there’s a neighborhood U_i of x_i, so that $f(z) - t = \sum_{k \geq k_i} a_k(z-x_i)^k$, $\forall z \in U_i$, so that $f(z) - t = (z-x_i)^k \cdot \phi(z)$, where here $\phi(z)$ is a non-zero holomorphic function. Thus locally we can choose a change of variable $w = (z-x_i) \sqrt[k]{\phi(z)}$ by choosing one branch of $\sqrt[k]{\phi(z)}$. The Jacobian of this transformation is

$$\frac{\partial w}{\partial z} = k\sqrt[k]{\phi(z)} + (z-x_i) \frac{\phi'(z)}{(\sqrt[k]{\phi(z)})^{k_i-1}}.$$

So by shrinking the U_i if necessary, we can find a non-zero Jacobian. So we switch to this local chart on X, with local coordinate w and so $f(w) - t = w^k$ on this local chart.

Since $f(X - \bigcup_{i \in I} U_i)$ is compact as f is continuous, we can find a D' such that $\overline{D'} \cap f(X - \bigcup_{i \in I} U_i) = \emptyset$. So $f^{-1}(\partial D') \subset \bigcup_{i \in I} U_i$. Thus on D' one can show that

$$f^{-1}(\partial D') = \bigcup_{i \in I} f^{-1}(\partial D') \cap U_i.$$

As a result, we can get for D' the integral

$$n_t = \int_{f^{-1}(\partial D')} \frac{df}{f-t} = \sum_{i \in I} \int_{f^{-1}(\partial D') \cap U_i} \frac{dw^{k_i}}{w^{k_i}} = (2\pi i) \sum_{i \in I} k_i$$

We know as well that if we replace D' by a smaller subset D'', the above argument still holds since $D'' \cap f(X - \bigcup_{i \in I} U_i) = \emptyset$ as well.

Now we have to prove that the integral does not depends on the choice of D. Without loss of generality we can assume that $D' \subset D$, this is because since $D' \cap D \neq \emptyset$ we can replace our D' by $D' \cap D$ and the previous argument still holds. Thus we have to show that

$$\int_{f^{-1}(\partial D)} - \int_{f^{-1}(\partial D')} \frac{df}{f-t} = \int_{f^{-1}(\partial(D-D'))} \frac{df}{f-t} = 0.$$

We have $f^{-1}(\partial(D-D')) = \partial f^{-1}(D-D')$. Since $\frac{df}{f-t}$ is a holomorphic form on $f^{-1}(D-D')$, we can conclude from Stokes theorem that

$$\int_{\partial f^{-1}(D-D')} \frac{df}{f-t} = \int_{f^{-1}(D-D')} \partial (\frac{df}{f-t}) = 0.$$
On the other hand, if \(t = \infty \), we can do the same process for \(\frac{1}{f(z)} = \sum_{k \geq k_i} a_k(z - x_i)^k \), and now we can choose a local chart so that \(\frac{1}{f} = w^{k_i} \), and we can show that \(n_\infty \) is defined to be

\[
n_\infty = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{dg}{g} \quad \text{here } g = \frac{1}{f}.
\]

To prove that there’s an actual correspondence between this definition and our previous definition when \(t \neq \infty \), we can define

\[
m_s = \int_{\partial \Omega} \frac{dg}{g - s}, \quad \text{here } g = \frac{1}{f}.
\]

Now we need to prove that \(m_s \) actually parametrize \([1 : s]\) at the neighborhood of \(\infty = [1 : 0] \). By transformation of coordinate \([t : 1] = [1 : 1/t] \), thus we just need to show that \(m_{1/t} = n_t \) and so \(n_t \) naturally extends to \(t = \infty \).

To show this, we notice that if \(f - t \) has zero of order \(k_i \), \(1/f - 1/t \) will have zero of order \(k_i \) as well. We can see this by the Taylor expansion \(1/f - 1/t = (t - f)/(tf) \) and \(f - t \) has zero of order \(k_i \). Now integrating \(d(1/f)/(1/f - 1/t) \) at the boundary will give rises to the same integer at \(x_i \) since both of \(f - t \) and \(1/f - 1/t \) has zero of order \(k_i \).

(c) Show that \(n_t \) is independent of \(t \).

We first claim that \(n_t \) defines a continuous function on both charts of \(\mathbb{P}^1 \). This is because when we fix \(D, \forall t, t' \in D \) in the chart \(U_1 \) not containing \([1 : 0]\) we’re integrating over the same path and thus the change is only

\[
\int_{f^{-1}(\partial \Omega)} (t - t') \frac{df}{(f - t)(f - t')}.
\]

Thus when \(t \to t' \) we see that the limit will be zero since \(\int \frac{df}{(f - t)^2} \) is finite.

Notice now if on the neighborhood of \(t = \infty \), as we have seen before, the integral is the same as

\[
m_s = \int_{g^{-1}(\partial \Omega)} \frac{dg}{g - s}, \quad g = \frac{1}{f}
\]

We know that \(m_s \) is continuous at neighborhood \(U_2 \) of \(s = 0 \) and we have the identity \(n_t = m_{1/t} \) when \(t \neq 0, \infty \).

Thus \(n_t : U_1 \to \mathbb{Z} \) is a continuous function, and the only possibility is that \(n_t \) is a constant on \(U_1 \). Since \(m_s \) is continuous on \(U_2 \), this tells us \(n_\infty = m_0 \) is the same constant as \(n_t \).

(d) Show that \(f \) is ramified at a point \(x \) if and only if the order of vanishing \(k_x(f - t) \) of \(f - t \) of \(x \) is at least equal to \(2 \). Deduce from Sard’s theorem that for \(t \) in a dense set of points, the fiber \(f^{-1}(t) \) is a set of finite cardinality \(n \).

Fact: let \(g(z) = z^n \), then if the coordinate of the image is \(w \), then \(dg(\frac{\partial}{\partial z}) = nz^{n-1} \frac{\partial}{\partial w} \). So \(g \) is ramified at 0 if and only if \(n \geq 2 \).

Now if \(t \neq \infty \), by previous argument we see that we can find a neighborhood \(U_i \) of \(x \) an invertible map \(w^{-1} : U_i \to V_i \) such that \(f : V_i \to \mathbb{C} \) is given by \(w^{k_i} \). Since the Jacobian of \(w^{-1} \) is nonzero, we know that \(f \) is ramified at \(x \in U_i \) if and only if the induced map \(\tilde{f} \) is ramified at 0. We already know that \(z^k \) is ramified at 0 if and only if \(k \geq 2 \), thus the first claim is proven.

Sard’s theorem asserts that the places where \(df_x \) has rank less than 1 is of measure 0. Thus for a dense open set \(df_x \) is unramified, thus \(k_i = 1 \) for each preimage. Now since the degree is \(n \) we should have \(n \) points as our preimage.

If \(t = \infty \), this follows from the same argument with the function \(1/f \).

(e) Deduce from (c) that the divisor \(f^{-1}(0) - f^{-1}(\infty) \) is of degree 0.

This follows from the fact that \(\deg f^{-1}(t) = \sum k_{x_i} = n_t \). Thus \(\deg f^{-1}(0) - f^{-1}(\infty) = n_0 - n_\infty = 0 \) since \(n_t \) is a constant function.
3. Show using the maximum principle that a connected compact complex manifold X possesses no holomorphic functions other than the constant ones.

Let $|f| : X \to \mathbb{R}$ be the modulus of the holomorphic function f and let c be the maximum of $|f|$, which exists since X is compact and $|f|$ is continuous. Now we set $U = \{z | |f(z)| = c\}$. Then U is open by maximum principle (Theorem 1.21). Furthermore, U is closed since $|f|$ is continuous. Since U is nonempty as there exists a point achieving the maximum, we conclude that $U = X$.

4. Let $M = \mathbb{C}/(\mathbb{Z} + i\mathbb{Z})$ be the torus with its complex manifold structure. Prove that the holomorphic tangent bundle of M is trivial.

The local charts of M may be taken to be the open sets $\pi(B_p(1/2))$, where $B_p(1/2)$ is the disk of radius $1/2$ in \mathbb{C} centered at p and $\pi : \mathbb{C} \to M$ is the projection map.

Letting z_j be the coordinate in one of these charts, then TM is locally trivialized by $\partial/\partial z_j$. In comparing to another local coordinate z_k, we have $z_j = z_k + a_{jk} + ib_{ij}$ for some $a_{ij}, b_{ij} \in \mathbb{Z}$. It follows that $\partial/\partial z_j = \partial/\partial z_k$ and the transition functions for the tangent bundle are $\phi_{jk} \equiv 1$. As these are the transition functions of the trivial bundle bundle of rank 1, we conclude that TM is trivial.