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Lemma 5.1 in our paper [6] says that every infinite normal subgroup of Out(FN)
contains a fully irreducible element; this lemma was substantively used in the
proof of the main result, Theorem A in [6]. Our proof of Lemma 5.1 in [6] relied
on a subgroup classification result of Handel-Mosher [9], originally stated in [9]
for arbitrary subgroups H ≤ Out(FN). It subsequently turned out (see p. 1 in
[10]) that the proof of the Handel-Mosher theorem needs the assumption that H
be finitely generated. Here we provide an alternative proof of Lemma 5.1 from
[6], which uses the corrected version of the Handel-Mosher theorem and relies on
the 0-acylindricity of the action of Out(FN) on the free factor complex (due to
Bestvina-Mann-Reynolds).

20F; 57M,37D

1 Introduction

The purpose of this note is to correct a gap in our paper [6]. The proof of the main result,
Theorem A, of [6], substantively relies on Theorem 1.1 of Handel and Mosher [9] about
classification of subgroups of Out(FN).

Originally Theorem 1.1 was stated in [9] for arbitrary subgroups H ≤ Out(FN), and
we applied that statement in [6]. After our paper [6] was published, we were informed
that the proof of Theorem 1.1 in [9] only goes through under the additional assumption
that H ≤ Out(FN) be finitely generated; see the footnote at p.1 of [10].

The specific use of Theorem 1.1 of [9] in [6] occurs in the proof of Lemma 5.1 in [6].
This proof no longer works, when the Handel-Mosher result is replaced by its finitely
generated version. This situation has created a gap in the proof of Lemma 5.1 given in
[6].

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F,(57M,37D)
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In this corrigendum we fix this gap and provide an alternative proof of Lemma 5.1.
Thus Theorem A in [6] and all the other results proved there remain valid in their
original form. Lemma 5.1 in [6] stated the following:

Proposition 1.1 Let N ≥ 2 and let H ≤ Out(FN) be an infinite normal subgroup.
Then H contains some fully irreducible element φ.

Note that for N ≥ 3 every nontrivial normal subgroup of Out(FN) is infinite, but
Out(F2) does possess a finite nontrivial normal subgroup (namely the center of Out(F2),
which is cyclic of order 2). Recall also that an element φ ∈ Out(FN) is called fully
irreducible or iwip (for “irreducible with irreducible powers”) if no positive power of
φ preserves the conjugacy class of a proper free factor of FN .

The original formulation of Theorem 1.1 in [9] said that for an arbitrary subgroup
H ≤ Out(FN), either H contains a fully irreducible element or H has a subgroup of
finite index H0 such that H0 preserves the conjugacy class of some proper free factor
of FN . As noted above, it turns out that the proof of Theorem 1.1 in [9] only goes
through under the additional assumption that H be finitely generated.

The new proof of Lemma 5.1 of [6], presented here, is quite different from our original
argument in [6], although the proof still relies on the corrected finitely generated version
of the Handel-Mosher subgroup classification theorem. Another key ingredient in this
new argument is the proof, due to Bestvina, Mann and Reynolds, of 0-acylindricity of
the Out(FN) action on the free factor complex FFN .

The proof of 0-acylindricity was communicated to us by Bestvina and Reynolds.
Since this proof does not appear anywhere in the literature, we include it here for
completeness; see Proposition 2.2 below.

We are grateful to Ric Wade for bringing to our attention the issue with the original
formulation of Theorem 1.1 of [9]. We are also grateful to Mladen Bestvina and Patrick
Reynolds for explaining to us the argument for establishing 0-acylindricity of FFN .
Finally, we thank Martin Lustig for very helpful discussions regarding the train track
theory.

2 0-Acylindricity

We will use the terminology and notations from [6]. In particular, cvN denotes the
(unprojectivized) Outer space, CVN denotes the projectivized Outer space, cvN denotes
the closure of cvN in the hyperbolic length function topology, and CVN denotes the
projectvization of cvN , so that CVN is the standard compactification of CVN .
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2.1 Stabilizers of free factors and reducing systems

Following [20, 5], if T ∈ cvN and A ≤ FN is a proper free factor of FN , we say that
A reduces T if there exists an A-invariant subtree T ′ of T such that A acts on T ′ with
dense orbits (the subtree T ′ is allowed to consist of a single point). For T ∈ cvN denote
by R(T) the set of all proper free factors of FN which reduce T . Note that in many
cases R(T) is the empty set.

Lemma 2.1 below is a key step in proving Proposition 2.2 establishing 0-acylindricity
of the action of Out(FN) on the free factor graph. The proof of Lemma 2.1 relies on
the use of geodesic currents and algebraic laminations, and is due to Patrick Reynolds.
Lemma 2.1 could be replaced by a related statement, still sufficient to derive Proposi-
tion 2.2, and based the use of relative train tracks. This alternative argument is due to
Brian Mann and was communicated to us by Bestvina.

If a tree T ∈ cvN does not have dense FN -orbits, then it is known (see [7, 20, 14])
that T canonically decomposes as a "graph of actions". In this case there exists an
FN -equivariant distance non-increasing map f : T → Y for some very small simplicial
metric tree Y ∈ cvN such for every vertex v of Y the stabilizer StabFN (v) acts with
dense orbits on some StabFN (v)-invariant subtree Tv of T (where Tv may be a single
point). Moreover, the tree Y is obtained from T be collapsing each Tv to a point,
where v varies over all vertices of Y . In this situation we will say that Y ∈ cvN is the
simplicial tree associated to T . Note that if T ∈ cvN then Y = T .

Lemma 2.1 Let A be a proper free factor of FN and let hn ∈ Out(FN) be an infinite
sequence of distinct elements of Out(FN) such that hn([A]) = [A] for all n ≥ 1. Let
T0 ∈ cvN and T ∈ cvN be such that [T0]hn → [T] in CVN as n→∞. Then:

(1) If T has dense FN -orbits then there exists a nontrivial free factor A′ of A such
that A′ reduces T .

(2) If T does not have dense FN -orbits and Y ∈ cvN is the associated simplicial
tree, then some nontrivial free factor A′ of A reduces Y .

Proof There exist cn ≥ 0 such that limn→∞ cnT0hn = T in cvN . Since the elements
hn are distinct and the action of Out(FN) on CVN is properly discontinuous, it follows
that T ∈ cvN \ cvN and that limn→∞ cn = 0. For every n ≥ 1 choose a representative
βn ∈ Aut(FN) of the outer automorphism hn such that βn(A) = A.

Choose a nontrivial element a ∈ A and put an = β−1
n (a) ∈ A. Then

cn||an||T0hn = ||an||cnT0hn = ||an||cnT0βn = cn||βn(an)||T0 = cn||a||T0 →n→∞ 0.
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In PCurr(FN) we have limn→∞
1

||an||T0
ηan = µ 6= 0. Here, for a nontrivial element

g ∈ FN , ηg ∈ Curr(FN) is the “counting current” associated to g [12].

Since T0 ∈ cvN , there exists c > 0 such that ||g||T0 ≥ c > 0 for all g ∈ FN . Hence
||an||T0 ≥ c and therefore

〈T, µ〉 = lim
n→∞
〈cnT0hn,

1
||an||T0

ηan〉 = lim
n→∞

cn

||an||T0

〈T0hn, ηan〉 =

lim
n→∞

cn

||an||T0

||an||T0hn = lim
n→∞

cn

||an||T0

||a||T0 = 0.

Here 〈 , 〉 : cvN × Curr(FN) → R is the continuous “geometric intersection form”
constructed in [13].

Since 〈T, µ〉 = 0, by the main result of [14] we have supp(µ) ⊆ L(T), where supp(µ) is
the support of µ and L(T) is the dual algebraic lamination of T (see [7] for background
about dual algebraic laminations associated to elements of cvN ). Since an ∈ A for all
n ≥ 1, the construction of µ implies that there is a leaf of L(T) that is carried by A.

If T has dense FN -orbits, then by Corollary 6.7 of [20], there exists a nontrivial free
factor A′ of A such that A′ reduces T , and part (1) of the lemma holds.

Suppose now that T does not have dense FN -orbits, and let Y ∈ cvN be the associated
simplicial tree for T .

Then by Lemma 10.2 of [14], we have L(T) ⊆ L(Y). Since the factor A carries a
leaf of L(T), it follows that A also carries a leaf ` of L(Y). The description of the
dual lamination of a very small simplicial tree, given in Lemma 8.2 of [14], then
implies that A contains some nontrivial element acting elliptically on Y . Namely,
consider a free basis X of FN such that X contains as a subset a free basis X′ of
A. Lemma 8.2 of [14] now implies that for some vertex group U of T ′ and for the
Stallings core subgroup graph ∆U [15] (with oriented edges labelled by elements of
X±1 ) representing the conjugacy class of U , there exists a bi-infinite reduced edge-path
γ in ∆U corresponding to the leaf ` of L(Y). The fact that ` is carried by A means that
all the edges of γ are labelled by elements of (X′)±1 . Since γ is an infinite reduced
path, we can find an immersed circuit as a subpath of γ . Then the label a′ of this circuit
is a nontrivial element of A whose conjugate belongs to U and thus a′ acts elliptically
on Y .

If A fixes a point of Y , then A reduces Y and we are done. Otherwise consider the
minimal A-invariant subtree YA of Y . Then the quotient graph of groups A = YA//A
gives a nontrivial very small splitting of A with at least one nontrivial vertex group.
The general structural result (Lemma 4.1 of [2]) about very small simplicial splittings
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of free groups then implies that there exists a nontrivial free factor A′ of A such that a
conjugate of A′ is contained in some vertex group of A. Then A′ fixes a vertex of the
tree YA and therefore A′ reduces Y , as required.

2.2 0-acylindricity of the free factor graph

A simplicial isometric action of a group G on a connected simplicial graph X , endowed
with the simplicial metric d , is called 0-acylindrical if there exist constants D,m ≥ 1
such that for any vertices x, y of X with d(x, y) ≥ D, the set StabG(x) ∩ StabG(y) =

{g ∈ G|gx = x, gy = y} has cardinality ≤ m. See [19] for the background on
acylindrical actions.

For N ≥ 2 let FFN be the free factor graph for FN . The vertices of FFN are
the conjugacy classes [A] of proper free factors A of FN . For N ≥ 3 the adjacency
of vertices in FN corresponds to containment: two distinct vertices [A] and [B] are
adjacent if there exist representatives A of [A] and B of [B] such that A ≤ B or B ≤ A.
For N = 2 the definition of adjacency is somewhat different, see [3] for details. It is
known that for N ≥ 2 the graph FFN is connected and Gromov-hyperbolic [3, 16, 11].
There is a natural action of Out(FN) on FFN by simplicial isometries.

We denote the simplicial metric on FFN by d .

Proposition 2.2 (0-acylindricity of the free factor complex) There exists a constant
M ≥ 1 with the following property:

If N ≥ 2 and if A,B are proper free factors of FN such that d([A], [B]) > M then the
set

StabOut(FN )([A]) ∩ StabOut(FN )([B])

is finite and has cardinality ≤ N! 2N . Thus the action of Out(FN) on FFN is 0-
acylindrical.

Proof Corollary 5.3 of [5] implies that there exists a constant C > 0 (independent of
the rank N of FN ) such that if T ∈ cvN admits a reducing factor then the set R(T) of
all reducing factors for T has diameter ≤ C in FFN . Take M = C + 2. Let A,B
be proper free factors of FN such that d([A], [B]) > M . Put H := StabOut(FN )([A]) ∩
StabOut(FN )([B]). We claim that H is finite.
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Indeed, suppose not, and H is infinite. Since Out(FN) is virtually torsion-free, it
follows that there exists an element h ∈ H of infinite order. Let T0 ∈ cvN be arbitrary
and let T ∈ cvN be such that limi→∞[T0hni] = [T] for some subsequence ni →∞.

Since h[A] = [A] and h[B] = [B], by Lemma 2.1 there exist a tree S ∈ cvN and
nontrivial free factors A′ of A and B′ of B such that A′ and B′ both reduce S . Namely,
we can take S = T if T has dense FN orbits and otherwise we can take S = Y where
Y ∈ cvN is the simplicial tree associated to T .

Note that if N = 2 then A′ = A, B′ = B, and the factors A,B are infinite cyclic.

Then d([A′], [A]) ≤ 1, d([B′], [B]) ≤ 1 and therefore d([A′], [B′]) > M − 2 = C .
Thus the set of reducing factors for S has diameter > C in FFN , which contradicts
the choice of C .

Thus H ≤ Out(FN) is finite. By a result of Wang and Zimmermann [21], it follows
that |H| ≤ N! 2N .

3 The proof of Proposition 1.1

We can now recover Lemma 5.1 of [6], which is stated as Proposition 1.1 above.

Proof of Proposition 1.1 Suppose that H ≤ Out(FN) is an infinite normal subgroup
but that H does not contain a fully irreducible element. Since Out(FN) is virtually
torsion-free and H is infinite, it follows that H contains an element φ of infinite order.

By assumption on H , φ is not fully irreducible and hence, after replacing φ by a
positive power, φ fixes the conjugacy class [A] of a proper free factor A of FN .

Now let M ≥ 1 be the 0-acylindricity constant provided by Proposition 2.2. We choose
a fully irreducible θ ∈ Out(FN) and look at the conjugates αn = θnφθ−n . Note that
αn fixes the conjugacy class θn[A]. Since H is normal, we have αn ∈ H , and thus
the subgroup Ln = 〈φ, αn〉 is contained in H . The subgroup Ln of Out(FN) is finitely
generated so the (corrected) Handel-Mosher subgroup classification theorem [9, 10]
does apply to Ln .

Since we assumed that H contains no fully irreducible elements, Ln must contain a
subgroup Kn of finite index which preserves a vertex [Bn] of the free factor complex.
Hence some positive powers of φ and of αn preserve [Bn].
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Since θ is fully irreducible, we have d([A], θn[A])→∞ as n→∞ (see [4, 13]). We
choose n ≥ 1 big enough so that d([A], θn[A]) > 2M + 1.

Then either d([A], [Bn]) > M or d([Bn], θn[A]) > M .

In the first case we get that some positive power φi of φ fixes both the vertices [A] and
[Bn] of FFN , so that φi belongs to the intersection of their stabilizers. This contradicts
0-acylindricity since φ has infinite order.

In the second case for some i > 0 the element αi
n = θnφiθ−n ∈ H fixes both [Bn] and

θn[A]. Thus αi
n belongs to the intersection of the stabilizers of [Bn] and θn[A], which

again contradicts 0-acylindricity, since αn has infinite order.

Remark 3.1 Let φ ∈ H be a fully irreducible element provided by Proposition 1.1.
Theorem 8.5 of Dahmani, Guirardel and Osin [8] then implies that for some m ≥
1 the normal closure U = ncl(φm) of φm in Out(FN) is free of infinite rank and
every nontrivial element of U is fully irreducible. Since H ≤ Out(FN) is normal by
assumption, we have U ≤ H .
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