16. Singular r-chains

1. a) A "singular r-cube" \(\gamma \) in \(M \) is a smooth map \(\gamma : [0, 1]^r \to M \).
 b) A "singular r-chain" is a formal linear combination of singular r-cubes: \(\sum_{i=1}^{d} a_i \gamma_i \)
 where \(a_i \in \mathbb{R} \).

2. Given a singular 1-cube \(\gamma \) in \(\mathbb{R}^3 \), we want to define the boundary of \(\gamma \) (denoted \(\partial \gamma \)) to be \(\gamma(1) - \gamma(0) \) (a singular 0-chain).

3. Given a singular 2-cube \(\gamma \) in \(\mathbb{R}^3 \), by looking at what \(\gamma \) does to the edges of the square, we get four 1-cubes, each oriented by increasing \(u^i \). We want \(\partial \gamma \) to be
 \[\gamma_{2,0} + \gamma_{1,1} - \gamma_{2,1} - \gamma_{1,0}. \]

4. For any r-cube \(\gamma : [0, 1]^r \to M \), define:
 a) \((r-1) \)-cubes \(\gamma_{i,\alpha} : [0, 1]^{r-1} \to M \), \(1 \leq i \leq r \), \(\alpha = 0 \) or \(1 \), by
 \[\gamma_{i,\alpha}(u^1, \ldots, u^{i-1}, u^{i+\alpha-1}) = \gamma(u^1, \ldots, u^{i-1}, \alpha, u^i, \ldots, u^{r-1}), \]
 b) the boundary of \(\gamma \) by
 \[\partial \gamma = \sum_{i,\alpha} (-1)^{i+\alpha} \gamma_{i,\alpha}. \]
 (If \(r = 0 \), set \(\partial \gamma = 1 \in \mathbb{R} \).)

5. Theorem: For any r-cube \(\gamma \), \(\partial^2 \gamma = 0 \).