Manifolds-with-boundary

1. Definition and examples.

For $n \geq 1$ we denote $\mathbb{R}_+^n := \{(x^1, \ldots, x^n) \in \mathbb{R}^n \mid x^n \geq 0\}$. A subset U of \mathbb{R}_+^n is said to be open in \mathbb{R}_+^n if $U = \mathbb{R}_+^n \cap U'$ for some open subset U' of \mathbb{R}^n.

A smooth n-manifold-with-boundary M is defined in a similar way to the notion of an n-manifold, except that the definition of an atlas \mathcal{A} on M is modified as follows. A chart in \mathcal{A} is now allowed to be either a 1-to-1 map $\phi = (x^1, \ldots, x^n) : U \to \mathbb{R}^n$ such that $\phi(U)$ is open in \mathbb{R}^n (such charts are called regular charts or a 1-to-1 map $\phi = (x^1, \ldots, x^n) : U \to \mathbb{R}_+^n$ such that $\phi(U)$ is open in \mathbb{R}_+^n (such charts are called boundary charts). All the other requirements for being an atlas remain the same.

Let M be an n-manifold-with-boundary given by an atlas \mathcal{A}.

A point $p \in M$ is called a regular point if there exists a chart $\phi = (x^1, \ldots, x^n) : U \to \mathbb{R}^n$ in \mathcal{A} such that $\phi(U)$ is open in \mathbb{R}^n and such that $p \in U$.

A point $p \in M$ is called a boundary point if p is not a regular point. This implies that whenever $p \in U$, where U is the domain of some chart ϕ, then $\phi = (x^1, \ldots, x^n) : U \to \mathbb{R}_+^n$ is a boundary chart with $p \in U$ such that $x^n(p) = 0$.

The set of all boundary points of M is denoted ∂M and the set of all regular points of M is denoted $int(M)$.

Examples.

1. If M is an n-manifold (in the old sense) then M is an n-manifold-with-boundary with $int(M) = M$ and $\partial M = \emptyset$.
2. $M = [0, 1]$ is a 1-manifold-with-boundary with $int(M) = (0, 1)$ and $\partial M = \{0, 1\}$.
3. In $n \geq 1$ and $M = \mathbb{R}_+^n$ then M is an n-manifold-with-boundary with $int(M) = \{(x^1, \ldots, x^n) \in \mathbb{R}^n \mid x^n > 0\}$ and $\partial M = \{(x^1, \ldots, x^n) \in \mathbb{R}^n \mid x^n = 0\}$.
4. The closed n-ball $D_n = \{(x^1, \ldots, x^n) \in \mathbb{R}^n \mid (x^1)^2 + \cdots + (x^n)^2 \leq 1\}$ is an n-manifold-with-boundary with $int(D_n)M = \{(x^1, \ldots, x^n) \in \mathbb{R}^n \mid (x^1)^2 + \cdots + (x^n)^2 < 1\}$ and with $\partial D_n = \{(x^1, \ldots, x^n) \in \mathbb{R}^n \mid (x^1)^2 + \cdots + (x^n)^2 = 1\} = S^{n-1}$.
5. The “solid torus” $M = D_2 \times S^1$ is a 3-manifold-with-boundary with $\partial M = S^1 \times S^1$ being the 2-torus.

The notions of the tangent space, tangent map, tensors and tensor fields, orientability, differential forms etc are defined for manifolds-with-boundary in exactly the same way as for ordinary manifolds. Note, however, that if M is an n-manifold-with-boundary, $p \in \partial M$ and $\phi = (x^1, \ldots, x^n) : U \to \mathbb{R}^n$ is a boundary chart with $p \in U$ and $x^n(p) = 0$, we still have $M_p = \{(\sum_{i=1}^n v_i \frac{\partial}{\partial x^i}) \mid v^i \in \mathbb{R}\}$. Thus in this case M_p is still an n-dimensional vector space and vectors $\sum_{i=1}^n v_i \frac{\partial}{\partial x^i}$ with $v^n < 0$ are still considered to be elements of M_p (even though they point “away” from $int(M)$).
2. Basic facts

(1) If M is an n-manifold-with-boundary, then ∂M is an $(n-1)$-manifold (in the old sense) and $\text{int}(M)$ is an n-manifold (again in the old sense). In particular, $\partial \partial M = \emptyset$.

(2) Let M be an n-manifold-with-boundary. If $p \in \text{int}(M)$ then $M_p = (\text{int} M)_p$. If $p \in M$ and $p \in \partial M$ and $\phi = (x^1, \ldots, x^n) : U \to \mathbb{R}^n$ is a boundary chart with $p \in U$ and $x^n(p) = 0$, then $(\partial M)_p = \{ \sum_{i=1}^n v_i \frac{\partial}{\partial x^i} | v_i \in \mathbb{R}, v^n = 0 \}$.

(3) Let $F : \mathbb{R}^n \to \mathbb{R}$ be a smooth function such that $N = \{ x \in \mathbb{R}^n | F(x) = 0 \}$ is nonempty and such that for every $x \in N$ we have $\text{grad} F|_x \neq (0, \ldots, 0)$. Then $M = \{ x \in \mathbb{R}^n | F(x) \leq 0 \}$ is an n-manifold-with-boundary and $\partial M = N$.

(4) If M is an n-manifold-with-boundary which is compact, then ∂M is also compact.

(5) If M is an n-manifold-with-boundary which is orientable then ∂M is also orientable. If M has an orientation (given by an orientation on each M_p), then the induced orientation on ∂M is defined as follows. Let $p \in \partial M$ and let $\vec{v}_1, \ldots, \vec{v}_{n-1}$ be a basis of $(\partial M)_p$. We say that this basis is positively oriented if the basis $\vec{v}, \vec{v}_1, \ldots, \vec{v}_{n-1}$ of M_p is positively oriented for M_p, where $\vec{v} \in M_p$ is any vector pointing “away” from $\text{int}(M)$ (such as $\vec{v} = -\frac{\partial}{\partial x^n}|_p$ for a boundary chart $\phi = (x^1, \ldots, x^n) : U \to \mathbb{R}^n$ is a boundary chart with $p \in U$ and $x^n(p) = 0$).