The volume form.

1. Orientation on vector spaces and manifolds.

(1) Let V be a vector space of dimension $n \geq 1$. Recall that an orientation on V is specified by choosing a particular basis e_1, \ldots, e_n of V. If v_1, \ldots, v_n is any other basis of V, this basis is declared positive if the transition matrix A has $\det(A) > 0$ and negative if $\det(A) < 0$.

Here $A = (v^i_j)_{ij}$, where $v_i = \sum_{j=1}^n v^i_j e_j$. Note that if $v_1 = e_1, \ldots, v_n = e_n$, then $A = I_n$ is the identity matrix and hence e_1, \ldots, e_n is a positive basis.

(2) Let M^n be an n-manifold. An orientation of M can be viewed as a continuous (with respect to varying p) choice of orientations on all the tangent spaces M_p, where $p \in M$.

Let $(U_i, \phi_i)_i$ be an orienting atlas on M (that is the Jacobians of all the transition maps $\phi_i \circ \phi_j^{-1}$ have positive determinants). For $p \in M$ this atlas defines an orientation on M_p by declaring that the basis $\frac{\partial}{\partial x^i} |_p, \ldots, \frac{\partial}{\partial x^n} |_p$ is a positive basis of M_p, where $p \in (U_i, \phi_i = (x^1, \ldots, x^n))$.

Conversely, suppose that we have specified a a continuous (with respect to varying p) choice of orientations on all the tangent spaces M_p, where $p \in M$.

We can construct an orienting atlas on M as follows. Start with any atlas $(U_i, \phi_i = (x^1_i, \ldots, x^n_i))_i$ with connected sets U_i. For every U_i choose $p \in U_i$ and check whether $\frac{\partial}{\partial x^i} |_p, \ldots, \frac{\partial}{\partial x^n} |_p$ is a positive basis of M_p. If yes, keep (U_i, ϕ_i) without change. If not, interchange x^i and x^j in ϕ_i. Do this for every i. The resulting collection of charts is an orienting atlas on M.

2. The volume form on a vector space. Let V be a vector space of dimension $n \geq 1$ with a chosen orientation. Let $\langle \ , \ \rangle$ be a positive-definite inner product on V. The volume form on V corresponding to this choice of an orientation and to $\langle \ , \ \rangle$ is the unique n-form ω on V such that for any positive basis v_1, \ldots, v_n of V we have

$$\omega = \sqrt{|g|} v^1 \wedge \cdots \wedge v^n,$$

here $|g|$ is the determinant of the $n \times n$ symmetric matrix g with $g_{ij} = \langle v_i, v_j \rangle$.

Facts.

(1) The form defined by (†) does not depend on the choice of a positive basis v_1, \ldots, v_n of V.

(2) If e_1, \ldots, e_n is a positive orthonormal basis of V then $\omega = e^1 \wedge \cdots \wedge e^n$.

(To see this, just apply the formula (†) in this case.

(3) Let e_1, \ldots, e_n be a positive orthonormal basis of V. Let v_1, \ldots, v_n be any other basis of V with $v_i = \sum_{j=1}^n v^i_j e_j$. Let A be the transition matrix $A = (v^i_j)_{ij}$.

Then

$$\omega(v_1, \ldots, v_n) = |\det(A)|.$$

Thus $\omega(v_1, \ldots, v_n)$ is equal to the volume of the n-dimensional box with sides v_1, \ldots, v_n in V, computed using the standard formulas of Euclidean geometry.
(4) Let \(\text{dim}(V) = 1 \). Let \(v \in V, v \neq 0 \), so that \(\{v\} \) is a basis of \(V \). Then \(g \) is a \(1 \times 1 \)-matrix with the entry \(g_{1,1} = \langle v, v \rangle = ||v||^2 \). Hence \(\omega = ||v||v^* \) if \(v \) is positive (in the sense of the orientation on \(V \)) and \(\omega = -||v||v^* \) if \(v \) is negative. In particular if \(\epsilon \in V \) is a positive unit vector, then \(\omega = \epsilon^* \). Note that if \(w \in V \) is any other vector, then \(w = ce \), where \(c = \epsilon ||w|| \), where \(\epsilon = 1 \) if \(w \neq 0 \) is a positive vector, \(\epsilon = -1 \) if \(w \neq 0 \) is negative and \(\epsilon = 0 \) if \(w = 0 \). Then \(\omega(w) = e^*(ce) = c = \epsilon ||w|| \). Thus the volume form \(\omega(w) \) computes the “signed length” of a \(w \) in this case.

3. The volume form on a manifold. Let \(M^n \) be an oriented \(n \)-manifold with a Riemannian metric \(g \). The volume form \(d\text{vol}_g \) is an \(n \)-form on \(M \) such that if \((U, \phi = (x^1, \ldots, x^n)) \) is a chart from an orienting atlas then in this chart

\[
d\text{vol}_g = \sqrt{|g|} \, dx^1 \wedge \ldots \wedge dx^n
\]

where \(g \) is the \(n \times n \)-matrix with \(g_{ij} = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) \).

4. The volume form on a surface. Let \(M^2 \) be an oriented surface with a Riemannian metric \(g \) and with an orienting chart \((U, \phi = (x^1, x^2)) \).

Then in this chart

\[
dA = d\text{vol}_g = \sqrt{EF-G^2} \, dx^1 \wedge dx^2,
\]

where \(E = g(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^1}), F = g(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}) \) and \(G = g(\frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^2}) \).

5. Outward unit normals for a surface in \(\mathbb{R}^3 \). Let \(M^2 \) be a surface in \(\mathbb{R}^3 \), where \(\mathbb{R}^3 \) is considered with coordinates \((x, y, z)\).

Here for \(p \in M \) we identify the tangent space \(M_p \) with the set of geometric tangent vectors to \(M \) at \(p \) in \(\mathbb{R}^3 \), so that \(M_p \subseteq \mathbb{R}^3 \) is a 2-dimensional linear subspace.

Recall that if \((U, \phi = (x^1, x^2))\) is a chart on \(M \) and \(\psi = \phi^{-1} : U \to \mathbb{R}^3, \psi = (\psi_1 = x(x^1, x^2), \psi_2 = y(x^1, x^2), \psi_3 = z(x^1, x^2)) \) then an abstract tangent vector \(\frac{\partial}{\partial x^1}|_p + b \frac{\partial}{\partial x^2}|_p \in M_p \) is identified with the geometric tangent vector

\[
\left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2} \right)|_p \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \frac{\partial}{\partial x^1}|_p + b \frac{\partial}{\partial x^2}|_p \\ a \frac{\partial}{\partial x^1}|_p + b \frac{\partial}{\partial x^2}|_p \end{bmatrix} \in \mathbb{R}^3
\]

for any \(a, b \in \mathbb{R} \).

(1) If \(M^2 \) is an oriented surface, then at every point in \(p \in M \) one can define the outward unit normal \(n(p) \in \mathbb{R}^3 \). Note that there are precisely two (opposite) vectors of length 1 in \(\mathbb{R}^3 \) that are perpendicular to the 2-dimensional subspace \(M_p \subseteq \mathbb{R}^3 \). The outward unit normal \(n(p) \) is the unique unit normal to \(M_p \) with the property that if \(v_1, v_2 \in M_p \subseteq \mathbb{R}^3 \) is a positive basis of \(M_p \) then \(n(p), v_1, v_2 \) is a positive basis of \(\mathbb{R}^3 \) with respect to the standard orientation on \(\mathbb{R}^3 \).

Specifically, in this case

\[
n(p) = \frac{v_1 \times v_2}{||v_1 \times v_2||}
\]
(2) Suppose M^2 is an oriented surface and $(U, \phi = (x^1, x^2))$ is an orienting chart with $\psi = \phi^{-1} = (\psi_1 = x(x^1, x^2), \psi_2 = y(x^1, x^2), \psi_3 = z(x^1, x^2))$.

Then for $p \in U$ the geometric tangent corresponding to $\frac{\partial}{\partial x^1}|_p$ is $\frac{\partial \psi_1}{\partial x^1}|_p \in \mathbb{R}^3$ and the geometric tangent corresponding to $\frac{\partial}{\partial x^2}|_p$ is $\frac{\partial \psi_2}{\partial x^2}|_p \in \mathbb{R}^3$. Hence we can compute the outward unit normal as:

$$n(p) = \frac{\frac{\partial \psi_1}{\partial x^1}|_p \times \frac{\partial \psi_2}{\partial x^2}|_p}{||\frac{\partial \psi_1}{\partial x^1}|_p \times \frac{\partial \psi_2}{\partial x^2}|_p||}$$

(3) Let $f : \mathbb{R}^3$ is a smooth function such that for every $p \in M$ with

$$M = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 0\}$$

we have $\text{grad } f_p \neq 0$ (so that M is a 2-manifold).

Let

$$N = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) \leq 0\}.$$

Then N is a 3-manifold-with-boundary in \mathbb{R}^3 and $\partial N = M$. We give N the same orientation as in \mathbb{R}^3 and we give $M = \partial N$ the induced orientation. Then for any $p \in M$ we can compute the outward unit normal as

$$n(p) = \frac{\text{grad } f|_p}{||\text{grad } f|_p||}.$$

(4) Let $M^2 \subseteq \mathbb{R}^3$ be a surface. Suppose that for every $p \in M$ we have chosen a unit vector $n(p) \in \mathbb{R}^3$ that is perpendicular to M_p and such that $n(p)$ varies continuously with p. This defines an orientation on M. Namely, for $p \in M$ and a basis $v_1, v_2, \in M_p$ we declare that v_1, v_2 is a positive basis of M_p if and only if $n(p), v_1, v_2$ is a positive basis of \mathbb{R}^3 (that is, if and only if $n(p) = cv_1 \times v_2$ where $c > 0$). This determines an orientation on M_p with respect to which $n(p)$ is the outward unit normal.

6. **The volume form for a surface in \mathbb{R}^3.** Let $M^2 \subseteq \mathbb{R}^3$ be an oriented surface with an outward unit normal $n = (n^1, n^2, n^3)$. We endow M with a Riemannian metric g that is the restriction to M_p of the standard inner product in \mathbb{R}^3. That is, if $v_1 = (v_1^1, v_1^2, v_1^3)$ and $v_2 = (v_2^1, v_2^2, v_2^3)$ are elements of $M_p \leq \mathbb{R}^3$, we put

$$g|_p(v_1, v_2) = (v_1, v_2) = v_1^1v_2^1 + v_1^2v_2^2 + v_1^3v_2^3.$$

Then the volume form dA on M is:

$$dA = n^1\,dy \wedge dz + n^2\,dz \wedge dx + n^3\,dx \wedge dy.$$

Moreover,

$$n^1\,da = dy \wedge dz, \quad n^2\,da = dz \wedge dx, \quad n^3\,da = dx \wedge dy$$

on M.

7. **The volume form for a curve in \mathbb{R}^3.** Let $M^1 \subseteq \mathbb{R}^3$ be an oriented 1-manifold (that is, a curve in \mathbb{R}^3 with a chosen direction). For every point $p \in M$ there are exactly two (opposite) unit tangent vectors to M at p. Let $T|_p = (T_1|_p, T_2|_p, T_3|_p) \in \mathbb{R}^3$ be the unique unit tangent vector to M at p
which is positively oriented with respect to the orientation on M. We endow M with a Riemannian metric g that is the restriction to M_p of the standard inner product in \mathbb{R}^3. Denote by ds the volume form on M corresponding to g. Then

$$ds = T^1 dx + T^2 dy + T^3 dz$$

on M. Moreover,

$$T^1 ds = dx, \ T^2 ds = dy, \ T^3 ds = dz$$

on M.