1. Let w be a 2-form on \mathbb{R}^3 given by

 \[w = 2xy \, dx \wedge dy - (x^2 + y + 1) \, dy \wedge dz \]

 a) Find dw

 b) Let $X = 2xy \frac{\partial}{\partial x} + (z^2 + x^2) \frac{\partial}{\partial z}$.

 Compute the 1-form $i_X(w)$

 c) Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be given by

 \[f(u, v) = (u + v, u^2 + 1, 3uv - 4) \]

 Compute the form f^*w on \mathbb{R}^2

 d) Let $\eta = dx + dy + 3dz$. Compute $w \wedge \eta$.

2. Consider the following vector fields on \mathbb{R}^3

 \[X = 2yx \frac{\partial}{\partial x} + (z^2 + x^2) \frac{\partial}{\partial z} \]

 \[Y = e^{xy} \frac{\partial}{\partial x} + \cos(2xz) \frac{\partial}{\partial y} \]

 Compute the vector field $[X, Y]$ on \mathbb{R}^3
3. Let X, Y, Z be smooth vector fields on M.
Prove the Jacobi identity:

$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0$$

4. Let W be an r-form on a vector space V, where $r \geq 2$.
Let $v_1, v_2, \ldots, v_r \in V$ be linearly dependent vectors.
Prove that $W(v_1, v_2, \ldots, v_r) = 0$

5. Let $W = \alpha(x,y,z) \, dx \wedge dy + \beta(x,y,z) \, dx \wedge dz + \\ + \gamma(x,y,z) \, dy \wedge dz$

a) Write an explicit condition for α, β, γ
equivalent to the condition $\text{d}W = 0$.

b) Write an explicit condition for α, β, γ
equivalent to saying that W is exact.

c) Prove that

$$W = z^2 \, dx \wedge dy + 2zy \, dx \wedge dz$$
is an exact 2-form on \mathbb{R}^3.