1. Let M be a 2-manifold and let W be a $(1, 1)$-tensor field on M. Let $(U, \Psi = (x^1, x^2))$ and $(V, \Psi = (y^1, y^2))$ be two coordinate charts on M, such that in the first chart W has the form

$$W = (x^1)^2 x^2 \left(\frac{\partial}{\partial x^1} \otimes dx^2 \right),$$

that is

$$W^1 = (x^1)^2 x^2 \quad \text{and} \quad W_1 = 0.$$

a) Express W on $U \cup V$ with respect to the chart (V, Ψ).
b) Suppose that on $U \cap V$ the transition map from ψ to ψ' is $y'_1 = 2x'_1$, $y'_2 = x'_1x'_2$. Find explicitly, as functions of y'_1, y'_2, the coefficients $(W')^i_j$ of W with respect to (V, ψ) on $U \cap V$.
c) Let \(p \in M \) be such that \(p \in U \cap V \) and that \(\Psi(p) = (5, 1) \). Assuming the transition map as in b) find \(W(p) \) \(\left(dy^1 + dy^2, \frac{2}{dy^1} \right) \).
2. Let M^n be a manifold with a smooth Riemannian metric g. We say that a diffeomorphism $\alpha : M \rightarrow M$ is an isometry of (M, g) if for every $p \in M$ and $\vec{v}, \vec{w} \in T_p M$ we have
\[g(p) (\nabla, \nabla) = g(\alpha(p)) (\alpha_* \vec{v}, \alpha_* \vec{w}) \]

a) Suppose $\alpha : M \rightarrow M$ is an isometry of (M, g). Let $\gamma : [0, 1] \rightarrow M$ and $\gamma_1 = \alpha \circ \gamma$.
Prove that the curves γ, γ_1 have equal lengths with respect to g.

Hint: You do not need to use coordinate-wise formulas here. Use the definition of length, the definition of $\gamma(t)$ and the fact that for smooth maps f_1 and f_2 we have $(f_2 \circ f_1)_* = (f_2)_* \circ (f_1)_*$.
Let $M = \{ (x, y) \in \mathbb{R}^2 \mid y > 0 \}$ and let
\[
G = \frac{(dx)^2 + (dy)^2}{y^2} = \frac{1}{y^2} (dx \otimes dx) + \frac{1}{y^2} (dy \otimes dy)
\] on M. Prove that for every $\lambda > 0$ the map
\[
\alpha : M \to M \quad \alpha(x, y) = (\lambda x, \lambda y)
\] is an isometry of (M, G).
c) For \((M, g)\) above let
\[\gamma : [0, T] \rightarrow M \text{ be defined as} \]
\[\gamma(t) = (0, 1+t), \quad t \in [0, T] \quad (T > 0) \]
Find the length of \(\gamma\) with respect to \(g\).

d) Consider the vector field \(V = \frac{x^2}{y} \frac{\partial}{\partial y} + 2x \frac{\partial}{\partial x}\) on \(M\).
Let \(\omega\) be a 1-form on \(M\) defined as
\[\omega(p) \left(\overrightarrow{w} \right) = g(p) \left< V(p), \overrightarrow{w} \right> \quad \text{for every } p \in M, \overrightarrow{w} \in T_p M. \]
Find explicit representation of \(\omega\) as
\[\omega = h_1(x, y) \, dx + h_2(x, y) \, dy \quad \text{on } M. \]