Math 481

3. Checking the manifold definition

1. Example: An atlas on \(P^1 \). Recall that \(P^1 \) is the space of all lines in \(\mathbb{R}^2 \) through \((0,0)\).

The map \(\phi_1 \) is defined on what set \(U_i \subset P^1 \)? Is \((U_i, \phi_i) \) a coordinate patch? Are \((U_1, \phi_1), (U_2, \phi_2) \) an atlas?

- Is every line through \((0,0)\) contained in some \(U_i \)?
- Is \(\phi_1(U_1 \cap U_2) \) open in \(\mathbb{R}^2 \)? \(\phi_2(U_1 \cap U_2) \)?
- What is \(\phi_2 \circ \phi_1^{-1} \)? \(\phi_1 \circ \phi_2^{-1} \)?

2. Similarly, on Worksheet 1, for \(P^2 \) we have

- \(\phi_1(L) = (u_1^1, u_2^1) \),
- \(\phi_2(L) = (u_1^2, u_2^2) \),
- \(\phi_3(L) =? \)

3. Example: Consider \(k \) numbered rods of length 1, in a closed chain with hinged joints, in the plane. What is the configuration space if \(k = 3 \),

a) assuming the first rod is fixed,

b) no constraints assumed?
Math 481
4. Orientability

1. A manifold is orientable if it has an atlas such that whenever \(U_i \cap U_j \neq \emptyset \), then \(D(\phi_i \circ \phi_j^{-1}) \) has positive determinant.

 a) Here, \(\phi_i = (u_i^1, \ldots, u_i^n): U_i \to \mathbb{R}^n \) and \(D(\phi_i \circ \phi_j^{-1}) \) is the Jacobian

 \[
 \begin{pmatrix}
 \frac{\partial u_i^1}{\partial u_j^1} & \cdots & \frac{\partial u_i^1}{\partial u_j^n} \\
 \vdots & \ddots & \vdots \\
 \frac{\partial u_i^n}{\partial u_j^1} & \cdots & \frac{\partial u_i^n}{\partial u_j^n}
 \end{pmatrix}
 \]

 which we also write as

 \[
 \frac{\partial (u_i^1, \ldots, u_i^n)}{\partial (u_j^1, \ldots, u_j^n)}
 \]

 b) on \(U_i \cap U_j \), \(\phi_i \circ \phi_j^{-1} \) and \(\phi_j \circ \phi_i^{-1} \) are inverse maps, so, by the Multivariable Chain Rule, their Jacobians are inverse matrices. Hence, their determinants are inverse numbers (remember for \(n \times n \) matrices \(A, B \), \(\det(AB) = \det(A) \det(B) \)). Thus, these determinants are nonzero.

 c) Since \(\det D(\phi_i \circ \phi_j^{-1}) \neq 0 \), it has the same sign at all the points in a connected component of \(U_i \cap U_j \).

 d) Note: switching any pair of \(\phi_i \) coordinates switches two rows of \(D(\phi_i \circ \phi_j^{-1}) \). Switching any pair of \(\phi_j \) coordinates switches two columns of \(D(\phi_i \circ \phi_j^{-1}) \). Either switch changes the sign of the determinant.

2. A 2-dimensional manifold is orientable if and only if it does not contain a Möbius band. For example, \(\mathbb{P}^2 \) is not orientable.
3. a) Suppose M is an orientable manifold and $\mathcal{A} = \{ (U_\alpha, \phi_\alpha = (u^1_\alpha, \ldots, u^n_\alpha)) \}$ is an orienting atlas ($\det \frac{\partial (u^1_\alpha, \ldots, u^n_\alpha)}{\partial (u^1_\beta, \ldots, u^n_\beta)} > 0$ on $U_\alpha \cap U_\beta$). For any other compatible coordinate patch $(U, \phi = (x^1, \ldots, x^n))$ with U connected, the sign of $\det \frac{\partial (x^1, \ldots, x^n)}{\partial (u^1_\alpha, \ldots, u^n_\alpha)}$ is the same for all U_α with $U \cap U_\alpha \neq \emptyset$.

Reason: by the Multivariable Chain Rule, we have

$$\frac{\partial (x^1, \ldots, x^n)}{\partial (u^1_\beta, \ldots, u^n_\beta)} = \frac{\partial (x^1, \ldots, x^n)}{\partial (u^1_\alpha, \ldots, u^n_\alpha)} \frac{\partial (u^1_\alpha, \ldots, u^n_\alpha)}{\partial (u^1_\beta, \ldots, u^n_\beta)}$$

and \det is multiplicative.

b) Conclusion: If a manifold M has a finite atlas of connected coordinate patches, there is a finite recursive procedure for deciding if M is orientable: Start with the first patch and try to alter all those that intersect it to get the determinant of the Jacobians to be positive. If this cannot be done, M is not orientable. If it can, repeat starting with the second coordinate patch.

Reference: Frankel, pp. 82-85.