Math 427 Midterm Exam 3 (Solutions)
Due in class on Wednesday, November 19, 2014

PRINT YOUR NAME:

Problem 1. [10 points]
Consider the ideal \(I = (2x^2, x^3) \triangleleft \mathbb{Z}[x] \). Prove that \(I \) is not a principal ideal.

Solution.
Suppose, on the contrary, that \(I \) is a principal ideal, so that there exists \(f \in \mathbb{Z}[x] \) such that \(I = (f) \triangleleft \mathbb{Z}[x] \). Since \((f) = (-f)\), after possibly replacing \(f \) by \(-f\) we may assume that the leading coefficient of \(f \) is \(> 0 \).

Since both \(2x^2 \) and \(x^3 \) are divisible by \(x^2 \), it follows that every element of \(I = (2x^2, x^3) \) is divisible by \(x^2 \) as well. Since \(f \in I \), it follows that \(f = x^2f_0 \) for some \(f_0 \in \mathbb{Z}[x] \). Note that \(f_0 \neq 0 \) since \(I = (f) \neq \{0\} \). In particular, it follows that every nonzero element of \(I \) has degree \(\geq \deg(f) \geq 2 \). Since \(2x^2 \in I \) and \(\deg(2x^2) = 2 \), this implies that \(\deg(f) = 2 \). Therefore \(\deg(f_0) = 0 \), so that \(f_0 = a \in \mathbb{Z} \) for some integer \(a > 0 \).

Then \(f = ax^2 \) and \(I = (ax^2) \). Since \(x^3 \in I \), there exists a nonzero \(h \in \mathbb{Z}[x] \) such that \(x^3 = fh = ax^2h \). Note that \(3 = \deg(x^3) = \deg(ax^2) + \deg(h) = 2 + \deg(h) \), so that \(\deg(h) = 1 \). Thus \(h = bx + c \) for some \(b, c \in \mathbb{Z} \) with \(b \neq 0 \).

Hence from \(x^3 = ax^2(bx + c) = abx^3 + ac \) we get \(ab = 1 \) and \(ac = 0 \). Since \(a \neq 0 \), it follows that \(c = 0 \). Thus \(h = bx \) where \(ab = 1 \). Since \(a, b \in \mathbb{Z} \) and \(a > 0 \), it follows that \(a = b = 1 \). Thus \(f = ax^2 = x^2 \), \(I = (f) = (x^2) \) and \(x^2 \in I \).

However, both \(2x^2 \) and \(x^3 \) have all the coefficients at \(x^n \) with \(n = 0, 1, 2 \) being even integers. Therefore for every element \(g \in I = (2x^2, x^3) \), \(g = b_0 + b_1x + b_2x^2 + \ldots \), the coefficient \(b_2 \) is even. Hence \(x^2 \notin I \), yielding a contradiction.

Problem 2. [10 points]
Consider the product ring \(R = \mathbb{Z} \times \mathbb{Z} \).

(a) [6 points] Give an example of a maximal ideal \(I \triangleleft R, I \neq R \).
(b) [6 points] Give an example of a non-maximal ideal \(I \triangleleft R, \{0\} \neq I \neq R \).

Justify that your examples have the required properties.

Solution.

(a) The set \(I = 2\mathbb{Z} \times \mathbb{Z} \) is easily seen to be an ideal in \(R = \mathbb{Z} \times \mathbb{Z} \). We claim that \(I \) is a maximal ideal in \(R \).

Consider the map \(\phi : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}_2 \) given by \(\phi(m, n) = [m]_2 \), for \(m, n \in \mathbb{Z} \).

Then \(\phi \) is a surjective ring homomorphism with \(\ker(\phi) = I \). Thus the rings \(R/I \) and \(\mathbb{Z}_2 \) are isomorphic, by the First Isomorphism Theorem. The ring \(\mathbb{Z}_2 \) is a field and hence \(R/I \) is also a field. The fact that \(R/I \) is a field implies that \(I \) is a maximal ideal in \(R \).
(b) Consider the set \(I' = 2\mathbb{Z} \times \{0\} \subseteq \mathbb{Z} \times \mathbb{Z} \). It is easy to see that \(I' \) is an ideal in \(R \). Moreover, for the ideal \(I = 2\mathbb{Z} \times \mathbb{Z} \) as in part (a), we have

\[I' \subseteq I \subseteq R \]

and \(I' \neq I, I \neq R \). Therefore the ideal \(I' \) is not maximal in \(R \).

Problem 3. [10 points]

Prove that the rings \(\mathbb{Q}[x]/(x - 5) \) and \(\mathbb{Q} \) are isomorphic.

Hint: Use the First Isomorphism Theorem for rings.

Solution.

Indeed consider the map \(\phi : \mathbb{Q}[x] \to \mathbb{Q} \) defined as \(\phi(f) := f(5) \) for every \(f(x) \in \mathbb{Q}[x] \). Then \(\phi \) is a ring homomorphism.

Moreover, \(\phi \) is surjective, since for every \(r \in \mathbb{Q} \), when we view \(r \) as a polynomial of degree 0 in \(\mathbb{Q}[x] \), we have \(f(r) = r \).

We claim that \(\ker(\phi) = (x - 5) \triangleleft \mathbb{Q}[x] \).

Indeed, if \(f \in (x - 5) \) then \(f = a(x)(x - 5) \) for some \(a(x) \in \mathbb{Q}[x] \) and \(\phi(f) = a(5)(5 - 5) = 0 \), so that \(f \in \ker(\phi) \). Thus \((x - 5) \subseteq \ker(\phi) \).

Suppose now that \(f \in \ker(\phi) \) is arbitrary. By performing division with remainder in \(\mathbb{Q}[x] \) we have \(f = q(x - 5) + r \) for some \(q, r \in \mathbb{Q}[x] \) such that \(\deg(r) < \deg(x - 5) = 1 \). Hence \(\deg(r) = 0 \), so that \(r \in \mathbb{Q} \) is a constant.

We have \(r = f - q(x - 5) \). Since \(f \in \ker(\phi) \), it follows that \(\phi(f) = f(5) = 0 \) and therefore

\[r = \phi(r) = f(5) - q(5)(5 - 5) = 0. \]

Thus \(r = 0 \) and \(f = q(x - 5) \), so that \(f \in (x - 5) \). Since \(f \in \ker(\phi) \) was arbitrary, it follows that \(\ker(\phi) \subseteq (x - 5) \).

Since we already know that \((x - 5) \subseteq \ker(\phi) \), it follows that \(\ker(\phi) = (x - 5) \triangleleft \mathbb{Q}[x] \), as claimed.

Thus \(\phi : \mathbb{Q}[x] \to \mathbb{Q} \) is a surjective ring homomorphism with \(\ker(\phi) = (x - 5) \).

Therefore the rings \(\mathbb{Q}[x]/(x - 5) \) and \(\mathbb{Q} \) are isomorphic, by the First Isomorphism Theorem.

Problem 4. [10 points]

Prove that if \(G \) is a group of order 56, then \(G \) has a normal Sylow \(p \)-subgroup for some prime \(p \) dividing the order of \(G \).

Solution.

We have \(|G| = 56 = 7 \cdot 8 = 7 \cdot 2^3 \).

Let \(n_7 \) be the number of Sylow 7-subgroups in \(G \). Then, by the 3-d Sylow Theorem, \(n_7 | 8 \) and \(n_7 \equiv 1 \) mod 7. It follows that either \(n_7 = 1 \) or \(n_7 = 8 \).

If \(n_7 = 1 \), then \(G \) has a unique Sylow 7-subgroup, which is therefore normal, as required.

Suppose now that \(n_7 = 8 \). Every Sylow 7-subgroup of \(G \) has order 7, and any two such subgroups are either equal or their intersection is \(\{1\} \).

Therefore the number of elements of order 7 in \(G \) is equal to \((7 - 1)n_7 = 6 \cdot 8 = 48\).
Hence G has $56 - 48 - 1 = 7$ nontrivial elements a_1, \ldots, a_7 of orders different from 7.

By the First Sylow Theorem, G does possess at least one Sylow 2-subgroup. Every Sylow 2-subgroup P of G has order 8 and thus P consists of the identity element 1 and of 7 nontrivial elements whose orders are divisors of 8, i.e. whose orders are nonzero powers of 2. Since the only nontrivial elements of G with orders different from 7 are the elements a_1, \ldots, a_7, it follows that $P \subseteq \{1, a_1, \ldots, a_7\}$. Since $|P| = 8$, it follows that $P = \{1, a_1, \ldots, a_7\}$. Thus G has a unique Sylow 2-subgroup P, and therefore P is normal on G.

Problem 5. [10 points]

Prove that if R is an integral domain then the ring of formal powers series $R[[x]]$ is also an integral domain.

Solution.

To show that $R[[x]]$ is an integral domain, we need to verify that if $f, g \in R[[x]]$ are such that $f \neq 0$ and $g \neq 0$ in $R[[x]]$ then $fg \neq 0$ in $R[[x]]$.

Thus let $f, g \in R[[x]]$ be such that $f \neq 0$ and $g \neq 0$ in $R[[x]]$.

Then $f = a_mx^m + a_{m+1}x^{m+1} + \ldots$ and $g = b_nx^n + b_{n+1}x^{n+1} + \ldots$ for some $n, m \geq 0$, $a_i, b_j \in R$ such that $a_m \neq 0$ and $b_n \neq 0$ in R. Therefore

$$fg = a_mb_nx^{n+m} + (a_mb_{n+1} + a_{m+1}b_n)x^{m+n+1} + \ldots$$

Since $a_m \neq 0$, $b_n \neq 0$ and since, by assumption, R is an integral domain, it follows that $a_mb_n \neq 0$ in R. Hence $fg \neq 0$ in $R[[x]]$, as required.