Homework 11

Problem 1 Let \(R \) be a countable ring. Prove that the following conditions are equivalent:

1. The ring \(R \) is noetherian.
2. There does not exist a strictly ascending infinite chain of ideals in \(R \):
 \[I_1 < I_2 < \cdots < I_n < \cdots \]

Problem 2 Let \(R = \mathbb{Z}[x_1, x_2, \ldots] \). Let \(I = (x_1, x_2, \ldots) \triangleleft R \). Prove that \(I \) is not finitely generated.

Problem 3 Let \(S \) be a nonempty subset of \(\mathbb{C}^n \).

Prove that there exist \(f_1, \ldots, f_k \in \mathbb{C}[x_1, \ldots, x_n] \) such that \(f_i|_S = 0 \) for \(1 \leq i \leq k \) and such that for every \(g \in \mathbb{C}[x_1, \ldots, x_n] \) satisfying \(g|_S = 0 \) there exist \(g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n] \) such that
\[g = f_1g_1 + \cdots + f_kg_k. \]

Problem 4 Prove that if \(R \) is a noetherian ring and \(I \triangleleft R \) is an ideal in \(R \) then the ring \(R/I \) is also noetherian.

Problem 5 Prove that if \(R, S \) are noetherian ring then the ring \(R \times S \) is also noetherian.

Problem 6 Let \(F \) be a field. An \(F \)-algebra is a vector space \(R \) over \(F \) such that \(R \) is also a ring and such that
\[(\alpha a)b = \alpha(ab) = a(\alpha b) \] for all \(\alpha \in F, a, b \in R \).

Let \(R \) be an \(F \)-algebra which is finite-dimensional as a vector-space over \(F \). Prove that \(R \) is a noetherian ring.

Problem 7∗∗[optional] Prove that if \(R \) is a noetherian ring then the ring of formal power series \(R[[x]] \) is also noetherian.