Differential forms

1. Differential forms at a point

1.1. Definition and examples of k-forms.

Definition 1.1. Let $p \in \mathbb{R}^n$ and let $k \geq 1$ be an integer.

A k-form at p on \mathbb{R}^n is a function

$$\omega : \mathbb{R}^n_p \times \ldots \mathbb{R}^n_p \rightarrow \mathbb{R}$$

such that ω satisfies the following properties:

1. The map ω is multi-linear, that is we have

$$\omega(\bar{a}_1, \ldots, c\bar{a}_i + c'\bar{a}'_i, \ldots \bar{a}_k) = c\omega(\bar{a}_1, \ldots, \bar{a}_i, \ldots \bar{a}_k) + c'\omega(\bar{a}_1, \ldots, \bar{a}'_i, \ldots \bar{a}_k)$$

for every $1 \leq i \leq k$, for all $\bar{a}_1, \ldots, \bar{a}_i, \bar{a}'_i, \ldots \bar{a}_k \in \mathbb{R}^n_p$ and all $c, c' \in \mathbb{R}$.

2. The map ω is alternating or anti-symmetric, that is,

$$\omega(\bar{a}_1, \ldots, \bar{a}_i, \ldots, \bar{a}_j, \bar{a}_k) = -\omega(\bar{a}_1, \ldots, \bar{a}_j, \ldots, \bar{a}_i, \bar{a}_k)$$

for all $1 \leq i < j \leq k$ and all $\bar{a}_1, \ldots, \bar{a}_k \in \mathbb{R}^n_p$.

Also, by convention, for $k = 0$, we say a 0-form at p is any real number $r \in \mathbb{R}$.

For $k \geq 0$ we denote the set of all k-forms at p on \mathbb{R}^n by $\Omega^k_p \mathbb{R}^n$.

Remark 1.2. For $k = 1$ condition (1) in Definition 1.1 just means that a 1-form at p is a linear map $\alpha : \mathbb{R}^n_p \rightarrow \mathbb{R}$; in this case condition (1) in Definition 1.1 is vacuously satisfied. Thus for $k = 1$ Definition 1.1 agrees with the definition of a 1-form given in Ch 1.5 of O'Neill.

Remark 1.3. For $k \geq 0$ the set $\Omega^k_p \mathbb{R}^n$ has a natural structure of a vector space over \mathbb{R}, with respect to the pointwise addition and pointwise multiplication by a scalar of k-forms as functions $(\mathbb{R}^n_p)^k \rightarrow \mathbb{R}$.

Example 1.4.

1. Consider the standard dot-product on \mathbb{R}^3_p:

$$\omega : \mathbb{R}^3_p \times \mathbb{R}^3_p \rightarrow \mathbb{R}$$

defined as

$$\omega((v_1, v_2, v_3)_p, (w_1, w_2, w_3)_p) = v_1w_1 + v_2w_2 + v_3w_3$$

Then ω satisfies condition (1) of Definition 1.1 but does not satisfy condition (2). Thus ω is not a 2-form at p.

2. For a point $p = (p_1, p_2, p_3) \in \mathbb{R}^3$ consider a map $\omega : \mathbb{R}^3_p \times \mathbb{R}^3_p \rightarrow \mathbb{R}$ defined as

$$\omega((v_1, v_2, v_3)_p, (w_1, w_2, w_3)_p) = e^{p_1}v_1w_3 - e^{p_1}v_3w_1.$$

This map is a 2-form at p.

1
(3) For \(p \in \mathbb{R}^n \) consider the map
\[
\omega : \mathbb{R}^n_p \times \ldots \times \mathbb{R}^n_p \rightarrow \mathbb{R}
\]
defined as
\[
\omega(\vec{a}_1, \ldots, \vec{a}_n) := \det[\vec{a}_1 | \ldots | \vec{a}_n]
\]
where \(\vec{a}_1, \ldots, \vec{a}_n \in \mathbb{R}^3_p \) and in the above matrix we write \(\vec{a}_i \) as column-vectors.
Then \(\omega \) is an \(n \)-form at \(p \).

(4) For a point \(p = (p_1, p_2, p_3) \in \mathbb{R}^3 \) consider a map \(\omega : \mathbb{R}^3_p \times \mathbb{R}^3_p \rightarrow \mathbb{R} \) defined as
\[
\omega((v_1, v_2, v_3)_p, (w_1, w_2, w_3)_p) = v_1^2w_3^2 - v_2^2w_1^2.
\]
This map satisfies condition (2) of Definition 1.1 but does not satisfy condition (1) of Definition 1.1. Thus \(\omega \) is not a 2-form at \(p \).

Condition (2) of Definition 1.1 easily implies:

Lemma 1.5. Let \(k \geq 2 \) and \(\omega \in \Omega^k_p \mathbb{R}^n \). Then
\[
\omega(\vec{a}_1, \ldots, \vec{a}_i, \ldots, \vec{a}_j, \ldots, \vec{a}_k) = 0
\]
whenever \(1 \leq i < j \leq k \) and \(\vec{a}_1, \ldots, \vec{a}_k \in \mathbb{R}^n_p \) are such that \(\vec{a}_i = \vec{a}_j \).

1.2. Coefficients and basic properties of \(k \)-forms.

Definition 1.6 (Coefficients of a \(k \)-form). Let \(\omega \in \Omega^k_p \mathbb{R}^n \), where \(k \geq 1 \). For \(1 \leq i_1, \ldots, i_k \leq n \) put
\[
\omega_{i_1, \ldots, i_k} := \omega((e_{i_1})_p, \ldots, (e_{i_k})_p).
\]
We call the numbers \(\omega_{i_1, \ldots, i_k} \) the coefficients of \(\omega \).

We will often use a shorthand notation \(\vec{I} = (i_1, \ldots, i_k) \) and \(\omega_{\vec{I}} := \omega_{i_1, \ldots, i_k} \).

The fact that a \(k \)-form is a multi-linear map implies that a \(k \)-form is uniquely determined by its coefficients:

Proposition 1.7. Let \(\omega, \omega' \in \Omega^k_p \mathbb{R}^n \), where \(k \geq 1 \), be such that
\[
\omega_{i_1, \ldots, i_k} = \omega'_{i_1, \ldots, i_k}
\]
for all \(k \)-tuples of indices \(1 \leq i_1, \ldots, i_k \leq n \).
Then \(\omega = \omega' \) (that is, for every \(\vec{a}_1, \ldots, \vec{a}_k \in \mathbb{R}^n_p \) we have \(\omega(\vec{a}_1, \ldots, \vec{a}_k) = \omega'(\vec{a}_1, \ldots, \vec{a}_k) \)).

Lemma 1.8. Let \(k \geq 1 \), \(p \in \mathbb{R}^n \) and let \(\omega \in \Omega^k_p \mathbb{R}^n \). Then:

1. If \(1 \leq i_1, \ldots, i_k \leq n \) are such that for some \(t \neq s \) \(i_t = i_s \) then \(\omega_{i_1, \ldots, i_k} = 0 \).
2. If \(k \geq n + 1 \) then for any \(1 \leq i_1, \ldots, i_k \leq n \) we have \(\omega_{i_1, \ldots, i_k} = 0 \) and consequently \(\omega = 0 \). Thus for \(k \geq n + 1 \) \(\Omega^k_p \mathbb{R}^n = \{0\} \).
(3) Let \(\vec{I} = (i_1, \ldots, i_k) \), \(\vec{J} = (j_1, \ldots, j_k) \) be \(k \)-tuples of distinct indices from \(\{1, \ldots, n\} \), such that \(\vec{J} \) is a re-arrangement of \(\vec{I} \).

Then \(\omega_{\vec{J}} = \omega_{\vec{I}} \) if \(\vec{J} \) can be obtained from \(\vec{I} \) by an even number of “swaps” (where a “swap” in a \(k \)-tuple of indices consists of interchanging two entries in this \(k \)-tuple while leaving the other entries fixed), and \(\omega_{\vec{J}} = -\omega_{\vec{I}} \) if \(\vec{J} \) can be obtained from \(\vec{I} \) by an odd number of “swaps”.

(4) For \(1 \leq k \leq n \) a \(k \)-form \(\omega \) at \(p \) is uniquely determined by its coefficients \(\omega_{i_1, \ldots, i_k} \) corresponding to the strictly increasing \(k \)-tuples of indices \(1 \leq i_1 < \cdots < i_k \). Thus is, if \(1 \leq k \leq n \) and \(\omega, \omega' \in \Omega^k_p \mathbb{R}^n \) are such that for every \(1 \leq i_1 < \cdots < i_k \) we have \(\omega_{i_1, \ldots, i_k} = \omega'_{i_1, \ldots, i_k} \) then \(\omega = \omega' \).

Notation 1.9. Let \(\vec{I} = (i_1, \ldots, i_k) \) and \(\vec{J} = (j_1, \ldots, j_k) \) be where \(1 \leq i_1, \ldots, i_k, j_1, \ldots, j_k \leq n \).

We denote

\[
\delta_{\vec{J}}^\vec{I} :=
\begin{cases}
1 & \text{if } j_1, \ldots, j_k \text{ are distinct and } \vec{J} \text{ can be obtained from } \vec{I} \text{ by an even number of swaps} \\
-1 & \text{if } j_1, \ldots, j_k \text{ are distinct and } \vec{J} \text{ can be obtained from } \vec{I} \text{ by an odd number of swaps} \\
0 & \text{otherwise}
\end{cases}
\]

Note that we always have \(\delta_{\vec{J}}^\vec{I} = \delta_{\vec{J}}^\vec{I} \).

1.3. Basic \(k \)-forms.

Proposition-Definition 1.10 (Basic \(k \)-forms). Let \(p \in \mathbb{R}^n \), \(1 \leq k \leq n \) and let \(1 \leq i_1, \ldots, i_k \leq n \).

Then there exists a unique \(k \)-form \(\omega \) at \(p \), denoted \(dx_{i_1}|_p \wedge \cdots \wedge dx_{i_k}|_p \) such that for all \(1 \leq j_1, \ldots, j_k \leq n \) we have

\[
\omega_{j_1, \ldots, j_k} = \delta_{i_1, \ldots, i_k}^{j_1, \ldots, j_k}.
\]

For \(\vec{I} = (i_1, \ldots, i_k) \) we will also denote \(dx_{\vec{I}}|_p := dx_{i_1}|_p \wedge \cdots \wedge dx_{i_k}|_p \).

Thus

\[
dx_{i_1}|_p \wedge \cdots \wedge dx_{i_k}|_p(e_{j_1})_p, \ldots, (e_{j_k})_p = \delta_{i_1, \ldots, i_k}^{j_1, \ldots, j_k}.
\]

Remark 1.11. Proposition-Definition 1.10 implies that:

(a) If \(1 \leq i_1, \ldots, i_k \leq n \) and \(i_r = i_s \) for some \(r \neq s \) then \(dx_{i_1}|_p \wedge \cdots \wedge dx_{i_k}|_p = 0 \).

(b) \(\vec{I} = (i_1, \ldots, i_k) \), \(\vec{J} = (j_1, \ldots, j_k) \) and if \(\vec{J} \) is a rearrangement of \(\vec{I} \) then either \(dx_{\vec{J}}|_p = dx_{\vec{I}}|_p \) or \(dx_{\vec{J}}|_p = -dx_{\vec{I}}|_p \).

Example 1.12. Let \(\omega \) be the “determinant” \(n \)-form at \(p \in \mathbb{R}^n \) from part (3) of Example 1.4 above. Then \(\omega = dx_1|_p \wedge \cdots \wedge dx_n|_p \).

Indeed, by Proposition 1.7 to verify this equality we just need to check that the \(n \)-forms \(\omega dx_1|_p \wedge \cdots \wedge dx_n|_p \) have the same coefficients for all \(1 \leq
corresponding to \(i \). Let Theorem 1.13.

Theorem 1.13. Let \(1 \leq k \leq n \) and \(p \in \mathbb{R}^n \). Then:

1. The space \(\Omega^k_p \mathbb{R}^n \) is a finite-dimensional vector space, with a basis given by
 \[
 \{ dx_{i_1}|_p \wedge \cdots \wedge dx_{i_k}|_p | 1 \leq i_1 < \cdots < i_k \leq n \}.
 \]
2. We have \(\dim \Omega^k_p \mathbb{R}^n = \binom{n}{k} \).
3. For any \(\omega \in \Omega^k_p \mathbb{R}^n \) we have
 \[
 \omega = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \omega_{i_1, \ldots, i_k} dx_{i_1}|_p \wedge \cdots \wedge dx_{i_k}|_p = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \omega((e_{i_1})_p, \ldots, (e_{i_k})_p) dx_{i_1}|_p \wedge \cdots \wedge dx_{i_k}|_p
 \]

1.4. Wedge-product.

Proposition-Definition 1.14. Let \(r, s \geq 1 \) and let \(\alpha \in \Omega^r_p \mathbb{R}^n \) and \(\beta \in \Omega^s_p \mathbb{R}^n \).

Define a function
\[
\alpha \wedge \beta : (\mathbb{R}^n)_p^{r+s} \to \mathbb{R}
\]
as
\[
(\alpha \wedge \beta)(\vec{a}_1, \ldots, \vec{a}_{r+s}) := \sum_{1 \leq i_1, \ldots, i_{r+s} \leq r+s} \delta^{i_1 \cdots i_{r+s}}_{1 \cdots r+s} \alpha(\vec{a}_{i_1}, \ldots, a_{i_s}) \beta(\vec{a}_{i_{r+1}}, \vec{a}_{i+s})
\]
where the summation is taken over all rearrangements \(i_1, \ldots, i_{r+s} \) of \(1, 2, \ldots, r+s \).

Then \(\alpha \wedge \beta \) is an \((r+s)\) form at \(p \), called the wedge-product of \(\alpha \) and \(\beta \).

Also, if \(r = 0 \) and \(\alpha \) is a 0-form at \(p \), that is \(\alpha = c \) for some number \(c \in \mathbb{R} \), for any \(s \)-form \(\beta \in \Omega^s_p \mathbb{R}^n \) (where \(s \geq 0 \)) we put \(\alpha \wedge \beta := c \beta \).

Similarly, if \(s = 0 \) and \(\alpha \) is a 0-form at \(p \), that is \(\alpha = c \) for some number \(c \in \mathbb{R} \), for any \(r \)-form \(\beta \in \Omega^r_p \mathbb{R}^n \) (where \(r \geq 0 \)) we put \(\beta \wedge \alpha = \alpha \wedge \beta := c \beta \).
Proposition 1.15. The \wedge operation on forms at $p \in \mathbb{R}^n$ satisfies the following properties:

1. $(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$;
2. $(\alpha_1 + \alpha_2) \wedge \beta = \alpha_1 \wedge \beta + \alpha_2 \wedge \beta$;
3. $(c \alpha) \wedge \beta = c(\alpha \wedge \beta)$ (where $c \in \mathbb{R}$);
4. if $\alpha \in \Omega^r_p \mathbb{R}^n$ and $\beta \in \Omega^s_p \mathbb{R}^n$ (where $r \geq 0, s \geq 0$) then
 \[\alpha \wedge \beta = (-1)^{rs} \beta \wedge \alpha; \]
5. $dx_i \wedge dx_j = -dx_j \wedge dx_i$.

Remark 1.16. Consider a form $\omega = dx_{i_1}|_p \wedge \cdots \wedge dx_{i_r}|_p$, as defined in Proposition-Definition 1.10 above. Note that $dx_{i_1}|_p, \ldots, dx_{i_r}|_p \in \Omega^1_p \mathbb{R}^n$.

Then

\[\omega = dx_{i_1}|_p \wedge \cdots \wedge dx_{i_r}|_p \]

where the right-hand side is interpreted as iteratively applying the wedge-product operation from Proposition-Definition 1.14.