Orientation and orientability

1. Orientation on a vector space

Throughout this section let V be a vector space over \mathbb{R} of finite dimension $n \geq 1$. For two bases $B = b_1, \ldots, b_n$ and $B' = b'_1, \ldots, b'_n$ of V, the transition matrix

$$T_{B',B} = (a_{ij})_{i,j=1}^n$$

from B to B' is an $n \times n$ matrix where

$$b_i = \sum_{j=1}^n a_{ji} b'_j.$$

The following proposition records some basic facts about transition matrices:

Proposition 1.1. The following hold:

1. For any basis B of V we have $T_{B,B} = I_n$, the $n \times n$ identity matrix.
2. For any bases B, B', B'' of V we have $T_{B''B'} T_{B'B} = T_{B''B}$.
3. For any bases B, B' of V we have $T_{B,B'} = T_{B,B'}^{-1}$; in particular, $\det T_{B',B} \neq 0$.

Proof. We will give a proof of part (2) which is the central point of this proposition.

Denote $(a_{ij})_{ij} = T_{B,B'}$ and $(d_{kl})_{kl} = T_{B'',B'}$.

Thus for every $i = 1, \ldots, n$ we have

$$b_i = \sum_{j=1}^n a_{ji} b'_j$$

and for every $j = 1, \ldots, n$ we have

$$b'_j = \sum_{k=1}^n d_{kj} b''_k.$$

Therefore

$$b_i = \sum_{j=1}^n a_{ji} b'_j = \sum_{j=1}^n \sum_{k=1}^n a_{ji} d_{kj} b''_k =$$

$$\sum_{k=1}^n \left(\sum_{j=1}^n d_{kj} a_{ji} \right) b''_k = (T_{B'',B'} T_{B',B})_{ki} b''_k$$

and therefore $T_{B'',B'} T_{B',B} = T_{B'',B}$.

In view of the above proposition, the following definition is natural:

Definition 1.2 (Bases with the same orientation). Let B and B' be bases of V. We say that B' has the same orientation as B, and write $B' \sim B$, if $\det T_{B',B} > 0$. We B' has the opposite orientation from B, and write $B' \not\sim B$, if $\det T_{B',B} < 0$.

We have:

Proposition 1.3. The following hold:

1. The relation \sim is an equivalence relation on the set \mathcal{B} of all bases of V, that is:
 (a) For every basis \mathcal{B} of V, $\mathcal{B} \sim \mathcal{B}$.
 (b) If $\mathcal{B}' \sim \mathcal{B}$ then $\mathcal{B} \sim \mathcal{B}'$.
 (c) If $\mathcal{B}' \sim \mathcal{B}$ and $\mathcal{B}'' \sim \mathcal{B}'$ then $\mathcal{B}'' \sim \mathcal{B}$.

2. For any basis $\mathcal{B} = b_1, \ldots, b_n$ of V we have $\mathcal{B} \sim \mathcal{B}'$, where $\mathcal{B}' = -b_1, b_2, \ldots, b_n$.

3. There are exactly two distinct equivalence classes for the equivalence relation \sim on \mathcal{B}.

Definition 1.4 (Orientation). An orientation on V is a choice of an equivalence class for an equivalence relation \sim on the set \mathcal{B} of all bases of V.

In practice, an orientation on V is specified by choosing a specific basis $B = b_1, \ldots, b_n$ and taking the orientation to be the \sim-equivalence class of B. Then for any other basis B' of V, the basis B' is positively oriented with respect to this orientation if $\det T_{B',B} > 0$, and B' is negatively oriented with respect to this orientation if $\det T_{B',B} < 0$.

Definition 1.5 (Standard orientation on \mathbb{R}^n). For $n \geq 1$ the standard orientation on \mathbb{R}^n is determined by the standard unit basis e_1, \ldots, e_n of \mathbb{R}^n.

We record the following basic facts about the standard orientation in dimensions 2 and 3:

Proposition 1.6. The following hold:

1. A basis $\mathcal{B} = b_1, b_2$ of \mathbb{R}^2 is positively oriented with respect to the standard orientation on \mathbb{R}^2 if and only if moving from b_1 to b_2 is along the angle $< \pi$ between these two vectors gives the movement in the counter-clockwise direction.

2. An orthonormal basis $\mathcal{B} = b_1, b_2, b_3$ of \mathbb{R}^3 is positively oriented with respect to the standard orientation on \mathbb{R}^3 if and only if $b_3 = b_1 \times b_2$.

3. A basis $\mathcal{B} = b_1, b_2, b_3$ of \mathbb{R}^3 is positively oriented with respect to the standard orientation on \mathbb{R}^3 if and only if $(b_1 \times b_2) \cdot b_3 > 0$.

2. Orientable surfaces

Recall that we denote the coordinates on \mathbb{R}^2 by u, v and we denote the coordinates on \mathbb{R}^3 by (x, y, z).

Definition 2.1. A surface $S \subseteq \mathbb{R}^3$ is said to be orientable if there exists a collection of coordinate patches $\{\psi_\alpha : U_\alpha \to S\}_{\alpha \in A}$ (where each $U_\alpha \subseteq \mathbb{R}^2$ is an open subset and ψ_α is an injective regular map) such that:

1. We have $\cup_{\alpha \in A} \psi_\alpha(U_\alpha) = S$.

(2) For every \(\alpha, \beta \in A \) such that \(\psi_\alpha(U_\alpha) \cap \psi_\beta(U_\beta) \neq \emptyset \), we have
\[
\det D(\psi_\beta^{-1} \circ \psi_\alpha) > 0
\]
at every point where \(\psi_\beta^{-1} \circ \psi_\alpha \) is defined (here \(D(\psi_\beta^{-1} \circ \psi_\alpha) \) is the
\(2 \times 2 \) Jacobi matrix of the map \(\psi_\beta \circ \psi_\alpha^{-1} \)).

A collection \(\{ \psi_\alpha : U_\alpha \to S \}_{\alpha \in A} \) as above is called an **orienting atlas** for \(S \).

An orienting atlas \(\{ \psi_\alpha : U_\alpha \to S \}_{\alpha \in A} \) defines an orientation on \(T_qS \) for every \(q \in S \) as follows: If \(q = \psi_\alpha(p) \) for some \(\alpha \in A \) and \(p \in U_\alpha \), we declare the basis \((\psi_\alpha)_*(e_1)_p, (\psi_\alpha)_*(e_2)_p \) of \(T_qS \) (that is, the basis \(\frac{\partial \psi_\alpha}{\partial u}|_p, \frac{\partial \psi_\alpha}{\partial v}|_p \) of \(T_qS \)) to be positively oriented. Then a basis \(B \) of \(T_qS \) is **positively oriented** for the orientation determined by the orienting atlas \(\{ \psi_\alpha : U_\alpha \to S \}_{\alpha \in A} \) if and only if \(\det B > 0 \), where \(B = \frac{\partial \psi_\alpha}{\partial u}|_p \times \frac{\partial \psi_\alpha}{\partial v}|_p \).

Thus we have a choice of a positively oriented basis \(\frac{\partial \psi_\alpha}{\partial u}|_p, \frac{\partial \psi_\alpha}{\partial v}|_p \) of \(T_qS \) which varies continuously with the point \(q \in S \).

In practice one rarely uses the above definition of an orientation but rather works with computationally easier to handle but equivalent descriptions or orientability and orientation.

Definition 2.2 (Outward unit normal). Let \(\{ \psi_\alpha : U_\alpha \to S \}_{\alpha \in A} \) be an orienting atlas on a surface \(S \subseteq \mathbb{R}^3 \).

For \(q = \psi_\alpha(p) \) (where \(\alpha \in A \) and \(p \in U_\alpha \)) put
\[
N_q := \frac{\frac{\partial \psi_\alpha}{\partial u}|_p \times \frac{\partial \psi_\alpha}{\partial v}|_p}{||\frac{\partial \psi_\alpha}{\partial u}|_p \times \frac{\partial \psi_\alpha}{\partial v}|_p||}
\]
Then \(||N_q|| = 1 \), \(N_q \perp T_qS \) and for a basis \(B = b_1, b_2 \) of \(T_qS \) the basis \(B \) is positively oriented for the orientation determined by the orienting atlas \(\{ \psi_\alpha : U_\alpha \to S \}_{\alpha \in A} \) if and only if the basis \(b_1, b_2, N_q \) of \(\mathbb{R}^3 \) is positively oriented with respect to the standard orientation on \(\mathbb{R}^3 \).

The vector \(N_q \) is said to be the **outward unit normal** of \(S \) at \(q \) with respect to the orientation determined by the orienting atlas \(\{ \psi_\alpha : U_\alpha \to S \}_{\alpha \in A} \).

Theorem 2.3. Let \(S \subseteq \mathbb{R}^3 \) be a surface. Then the following conditions are equivalent:

1. \(S \) is orientable.
2. There exists a continuous vector field \(W : S \to \mathbb{R}^3 \) such that for every \(q \in S \) we have \(||W(q)|| = 1 \) and \(W(q) \perp T_qS \).
3. There exists a continuous vector field \(W : S \to \mathbb{R}^3 \) such that for every \(q \in S \) we have \(||W(q)|| \neq 0 \) and \(W(q) \perp T_qS \).
4. There exists a continuous (with respect to \(q \in S \)) choice of an orientation on \(T_qS \), that is, there exist continuous vector fields \(V_1, V_2 : S \to \mathbb{R}^3 \) such that for every \(q \in S \) the pair \(V_1(q), V_2(q) \) is a basis of \(T_qS \).
5. The surface \(S \) does not contain a copy of the Möbius band.
As a practical matter, we usually specify the orientation on S by providing a continuous unit normal vector field W on S as in part (2) (or a non-vanishing continuous normal vector field as in part (3)) of the above theorem. Then a basis b_1, b_2 of T_qS is positively oriented for the orientation on S determined by W if and only if $b_1, b_2, W(q)$ is a positively oriented basis of \mathbb{R}^3 with respect to the standard orientation on \mathbb{R}^3.

The following key fact provides a rich source of examples of orientable surfaces arising from the Implicit Function Theorem:

Theorem 2.4. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function, let $c \in \mathbb{R}$ and let $S = \{(x, y, z) \in \mathbb{R}^3 | f(x, y, z) = c\}$. Suppose that $S \neq \emptyset$ and that for every $q \in S$ we have $\text{grad}(f)|_q = (\frac{\partial f}{\partial x}|_q, \frac{\partial f}{\partial y}|_q, \frac{\partial f}{\partial z}|_q) \neq (0, 0, 0)$. Then:

1. S is an orientable surface in \mathbb{R}^3.
2. For every $q \in S$ we have $\text{grad}(f)|_q \perp T_qS$.

Thus in the above situation we can use $\text{grad}(f)$ as a non-vanishing normal vector field to define an orientation on S, for which $N_q = \frac{\text{grad}(f)|_q}{||\text{grad}(f)|_q||}$ (where $q \in S$) is the outward unit normal. For this orientation a basis $B = b_1, b_2$ of T_qS is positively oriented if and only if $b_1, b_2, \text{grad}(f)|_q$ is positively oriented with respect to the standard orientation on \mathbb{R}^3, that is, if and only if $(b_1 \times b_2) \cdot \text{grad}(f)|_q > 0$.
