Quiz 1 (Solution); Friday, January 29

For each of the following statements indicate if it is true or false. You do not need to provide explanations for your answers.

1. Let a, b, x, y, d be integers, where $d \geq 1$, such that $ax + by = d$. Then $\gcd(a, b) = d$.

2. The number 2^{100} has exactly 100 distinct positive divisors.

3. If p and q are distinct primes then there exist integers x and y such that $xp + yq = 1$.

4. If an integer $n \geq 2$ has no prime divisors p such that $p \leq \sqrt{n}$ then n is prime.

Solution:

1. FALSE. For example, $1 \cdot 5 + 1 \cdot 7 = 12$ but $\gcd(1, 1) = 1 \neq 12$.

2. FALSE. The number 2^{100} has exactly 101 distinct positive divisors: $1, 2, 2^2, 2^4, \ldots, 2^{100}$.

3. TRUE.

4. TRUE.