Ch. 2.8, Problem 7
If \(H \triangleleft G \) and \(|H| = 2\), show that \(H \subseteq Z(G) \). Is this true when \(|H| = 3\)?

Solution.
Since \(|H| = 2\), we have \(H = \{1, a\} \), where \(a \in G \) is such that \(|a| = 2\).

Let \(g \in G \) be arbitrary. Then \(gHg^{-1} = \{g1g^{-1}, gag^{-1}\} = \{1, gag^{-1}\} \).

Since \(H \triangleleft G \), we have \(gHg^{-1} = H \), that is \(\{1, a\} = \{1, gag^{-1}\} \). Hence \(a = gag^{-1} \), and so \(ag = ga \). Since \(g \in G \) was arbitrary, this means that \(a \in Z(G) \). Also, obviously \(1 \in Z(G) \). Therefore \(H = \{1, a\} \subseteq Z(G) \), as required.

If \(|H| = 3\) and \(H \triangleleft G \), then \(H \) need not be contained in the center of \(G \). For example, consider \(G = S_3 \) and \(H = \langle (1 2 3) \rangle \leq S_3 \). Since \(|S_3| = 6\) and \(|H| = 3\), we have \([S_3 : H] = \frac{6}{3} = 2\) and hence \(H \triangleleft S_3 \).

However, \(H \not\subseteq Z(S_3) \). For example, \((1 2)(1 2 3) = (2 3) \) and \((1 2 3)(1 2) = (1 3) \). Hence \((1 2)(1 2 3) \neq (1 2 3)(1 2) \) and \((1 2 3) \not\in Z(S_3) \) and therefore \(H \not\subseteq Z(S_3) \).

Ch. 2.8, Problem 12.
Let \(K \triangleleft G \), where \(K \) is cyclic. Show that every subgroup of \(K \) is normal in \(G \).

Solution.
Let \(K = \langle a \rangle \) for some \(a \in G \). Let \(H \leq K \) be an arbitrary subgroup. Since \(H \leq K = \langle a \rangle \) it follows that \(H = \langle a^d \rangle \) for some integer \(d \).

If \(|a| = 1\) then \(a = 1 \), \(H = K = \{1\} \) and, obviously, \(H \triangleleft G \). Thus from now on we will assume that \(|a| > 1\).

Since \(K \) is normal in \(G \), for every \(g \in G \) we have \(gKg^{-1} = K \). However, \(gKg^{-1} = \langle gag^{-1} \rangle \), so that for every \(g \in G \) we have \(\langle gag^{-1} \rangle = \langle a \rangle \). Thus for every \(g \in G \) the element \(gag^{-1} \) is a generator of \(\langle a \rangle \).

Case 1. Suppose first that \(|a| = \infty \).

We know from Ch. 2.4 that in this case the only generators of \(\langle a \rangle \) are \(a \) and \(a^{-1} \).

Let \(g \in G \) be arbitrary. Then \(gag^{-1} = a \) or \(gag^{-1} = a^{-1} \). If \(gag^{-1} = a \) then \(g(a^d)g^{-1} = \langle a^d \rangle \), that is \(gHg^{-1} = H \). If \(gag^{-1} = a^{-1} \) then, \(ga^dg^{-1} = a^{-d} \), \(g(a^d)g^{-1} = \langle a^{-d} \rangle = \langle a^d \rangle \), that is again \(gHg^{-1} = H \). Thus for every \(g \in G \) we have \(gHg^{-1} = H \) and hence \(H \triangleleft G \).

Case 2. Suppose now that \(|a| = n < \infty \).

Let \(g \in G \) be arbitrary. We know that \(\langle gag^{-1} \rangle = \langle a \rangle \), which, by the results of Ch. 2.4, implies that \(gag^{-1} = a^m \) for some integer \(m \) such that \(gcd(m, n) = 1 \).

Then \(gag^{-1} = a^m \) implies \(ga^dg^{-1} = a^{md} \) and hence \(g(a^d)g^{-1} = \langle a^{md} \rangle \).

We claim that \(\langle a^{md} \rangle = \langle a^d \rangle \). Indeed, the inclusion \(\langle a^{md} \rangle \subseteq \langle a^d \rangle \) is obvious. Since \(gcd(m, n) = 1 \), there exist integers \(x, y \) such that \(1 = xn + ym \) and hence \(d = dxn + dym \). Therefore \(a^d = a^{dxn}a^{dym} = (a^n)^{xn}(a^d)^{ym} = (a^d)^{ym} \).
since $a^n = 1$. Thus $a^d = (a^d)^{ym}$ which implies that $\langle a^d \rangle \subseteq \langle a^{dm} \rangle$. Thus $\langle a^{md} \rangle = \langle a^d \rangle$ as claimed.

We have shown that for every $g \in G$ we have $g\langle a^d \rangle g^{-1} = \langle a^d \rangle$, that is $gHg^{-1} = H$. Therefore $H \triangleleft G$.

Ch. 2.8, Problem 17.
Let $D_n = \{1, a, \ldots, a^{n-1}, b, ba, \ldots, ba^{n-1}\}$ with $|a| = n$, $|b| = 2$ and $aba = b$.

(a) Show that every subgroup K of $\langle a \rangle$ is normal in D_n.

Solution.
Note that $aba = b$ implies $ba = a^{-1}b$ and hence $ba^i = a^{-i}b$ for every integer i. Similarly, $ab = ba^{-1}$ and hence $a^ib = ba^{-i}$ for every $i \in \mathbb{Z}$.

Let $K \leq \langle a \rangle$ be an arbitrary subgroup. Since $\langle a \rangle$ is cyclic, it follows that K is cyclic and $K = \langle a^d \rangle$ for some $d \geq 1$ such that $d|n$.

Let $(a^d)^j = a^{dj} \in K$ be an arbitrary element of K where $j \in \mathbb{Z}$.

For $i = 0, 1, \ldots, n-1$ we have

$$a^i a^{dj} a^{-i} = a^{dj} \in K$$

and

$$ba^j a^{-i} b^{-1} = ba^{dj} b^{-1} = a^{-dj} b b^{-1} = a^{-dj} \in K.$$

Thus for every $g \in D_n$ we have $ga^{dj} g^{-1} \in K$. Since a^{dj} was an arbitrary element of K, it follows that $K \triangleleft D_n$.

(b) If n is odd and $K \triangleleft D_n$, show that $K = D_n$ or $K \subseteq \langle a \rangle$.

Solution.
Let $K \triangleleft D_n$ and suppose that $K \not\subseteq \langle a \rangle$. Then there exists $j \in \{0, 1, \ldots, n-1\}$ such that $ba^j \not\in K$.

Since $K \triangleleft D_n$, it follows that $a^{-1}(ba^j)a \in D_n$. We have $a^{-1}(ba^j)a = bba^ja = ba^{j+2} \in K$. Since $ba^j \in K$ and $ba^{j+2} \in K$, and since K is a subgroup, it follows that $(ba^j)^{-1}(ba^{j+2}) = a^{-j}b^{-1}ba^{j+2} = a^2 \in K$.

Since n is odd, $n = 2l-1$ for some integer l. Then $1 = a^n = a^{2l-1} = a^2a^{-1}$ and hence $a = a^{2l} = (a^2)^l$. Therefore $a \in K$ since $a^2 \in K$.

Since $a \in K$ and $ba^j \in K$, it follows that $ba^ja^{-j} = b \in K$. Thus $a, b \in K$. Therefore $D_n = K$ since every element of D_n is expressible in terms of a and b.

Ch. 2.8, Problem 20.
(a) Let $n = 2m$ where m is odd. Show that $D_n \cong C_2 \times D_m$.

Solution.
Recall that $D_n = \{1, a, \ldots, a^{n-1}, b, ba, \ldots, ba^{n-1}\}$ with $|a| = n$, $|b| = 2$ and $aba = b$. We also have $ba^i = a^{-1}b$ and $a^ib = ba^{-i}$ for every $i \in \mathbb{Z}$.

We have $|a|^m = n/m = 2$. Put $H = \langle a^m \rangle = \{1, a^m\}$. Thus H is a cyclic group of order 2, so that $H \cong C_2$.

Consider the set $K = \{1, a^2, a^4, \ldots, a^{2m}, b, ba^2, ba^4, \ldots, ba^{2m}\} \subseteq D_n$. It is not hard to check that $K \leq D_n$. Moreover, $|a^2| = n/2 = m$ and $a^2ba^2 = \ldots$
$ba^{-2}a^2 = b$. Thus $|a^2| = m$, $|b| = 2$ and $a^2ba^2 = b$. Hence, by definition of the dihedral groups, K is a dihedral group of order $2m$, that is $K \cong D_m$.

Since by assumption $n = 2m$ and m is odd, $a^n \not\in K$, so that $H \cap K = \{1\}$.

We claim that $H \triangleleft D_n$ and $K \triangleleft D_n$.

The fact that $H \triangleleft D_n$ follows from part (a) of Problem 17 since $H \subseteq \langle a \rangle$.

We also have $[D_n : K] = \frac{|D_n|}{|K|} = \frac{2n}{2m} = \frac{2n}{2m} = 2$. Therefore $K \triangleleft D_n$.

Finally, notice that $|H| \cdot |K| = |D_n|$. Indeed, $|H| = 2$, $|K| = 2m$ and $|D_n| = 2n = 4m$, so that $2 \cdot 2m = 4m$.

Thus we have verified that $|D_n| = |H||K|$, $H \triangleleft D_n$, $K \triangleleft D_n$, $H \cap K = \{1\}$, $H \cong C_2$ and $K \cong D_m$. Therefore by Theorem 6 in Ch 2.8 we have $D_n \cong H \times K \cong C_2 \times D_m$.

(b) Is $D_{12} \cong C_3 \times D_4$?

Solution.

No, $D_{12} \not\cong C_3 \times D_4$ since these groups have different numbers of elements of order 2.

It is not hard to check (this was a problem from h/wk 8, namely problem 25(b) from Ch. 2.6) that in the group D_n we have $|ba^j| = 2$ for every $j = 0, 1, \ldots, n - 1$. Also, if n is even, there exists exactly one element of order 2 in $\langle a \rangle$, namely $a^{n/2}$. Thus for every even $n \geq 2$ the group D_n has exactly $n + 1$ elements of order 2. In particular, D_{12} has 13 elements of order 2.

On the other hand, the only elements of order 2 in $C_3 \times D_4$ are elements of the form $(1, g)$ where $g \in D_4$ and $|g| = 2$. The number of such elements is $4 + 1 = 5$.

Since $5 \neq 13$, it follows that $D_{12} \not\cong C_3 \times D_4$.

Ch. 2.9 Problem 8.

Let $K \leq H \leq G$ be finite groups with $K \triangleleft G$. Show that H/K is a subgroup of G/K and $[G/K : H/K] = [G : H]$.

Solution.

Recall that since $K \triangleleft G$, we have $gK = Kg$ for every $g \in G$ and $G/K = \{gK : g \in G\} = \{Kg : g \in G\}$. Also, $K \triangleleft G$ obviously implies $K \triangleleft H$ and $H/K = \{hK : h \in H\} = \{Kh : h \in H\}$.

Let $h_1, h_2 \in H$ be arbitrary, so that h_1K and h_2K are arbitrary elements of H/K. Then, by definition of multiplication in G/K, we have $h_1K \cdot h_2K = h_1h_2K \in H/K$ since $h_1h_2 \in H$.

Also, for an arbitrary $h \in H$ defining an arbitrary element hK of H/K we have $h^{-1} \in H$ and hence $h^{-1}K \in H/K$. By definition of the group G/K we have $h^{-1}K$ is the inverse of hK in G/K. Finally, the identity element of G/K is $1K = K$ and since $1 \in H$, we have $1K \in H/K$. Thus indeed $H/K \leq G/K$ is a subgroup.

By Lagrange’s theorem we have $|G/K| = [G : K] = |G|/|K|$ and $|H/K| = [H : K] = |H|/|K|$. Hence, again by Lagrange’s Theorem,

$$[G/K : H/K] = \frac{|G/K|}{|H/K|} = \frac{|G|/|K|}{|H|/|K|} = \frac{|G|}{|H|} = [G : H],$$
as required.

Ch. 2.9, Problem 10.
If \(K \triangleleft G \) has index \(m \) in \(G \), show that \(g^m \in K \) for every \(g \in G \).

Solution.
Consider the factor group \(G/K \). Then \(|G/K| = |G : K| = m \). By Corollary 2 in Ch. 2.6, since \(G/K \) is a group of order \(m \), the \(m \)-th power of every element of \(G/K \) is equal to the identity element \(1K \) of \(G/K \). Thus for any \(g \in G \) we have \(g^mK = (gK)^m = 1K = K \) which implies that \(g^m \in K \), as required.

Ch. 2.9, Problem 17.
If \(G \) is abelian let \(T(G) \) be the set of all elements of \(G \) of finite order.

(a) Show that \(T(G) \) is a subgroup of \(G \) - the **torsion subgroup**.

Solution.
Let \(a, b \in T(G) \), so that \(|a| = n < \infty \), \(|b| = m < \infty \). Then, since \(G \) is abelian, we have \((ab)^m = a^mb^m = (a^n)(b^m)^n = 1 \). Thus \(ab \) has finite order and hence \(ab \in T(G) \).

Also, if \(a \in T(G) \), that is \(|a| < \infty \) then \(|a^{-1}| = |a| < \infty \) and hence \(a^{-1} \in T(G) \). Finally \(|1_G| = 1 < \infty \) and hence \(1_G \in T(G) \). Thus indeed \(T(G) \leq G \) is a subgroup of \(G \).

(b) Call \(G \) a **torsion-free group** if \(T(G) = \{1\} \). Show that if \(G \) is abelian then \(G/T(G) \) is torsion-free.

Solution.
Note first that since \(G \) is abelian, every subgroup of \(G \) is normal in \(G \) (in particular \(T(G) \) is normal in \(G \) and every factor-group of \(G \) is again abelian. In particular, \(G/T(G) \) is an abelian group.

Suppose \(gT(G) \in T(G/T(G)) \) where \(g \in G \). We need to show that \(gT(G) = 1T(G) \).

Let \(n < \infty \) be the order of \(gT(G) \) in the group \(G/T(G) \). By definition of multiplication in \(G/T(G) \) this means that \(1T(G) = (gT(G))^n = g^nT(G) \) and hence \(g^n \in T(G) \). Let \(m = |g^n| \). Since \(g^n \in T(G) \), this means that \(m < \infty \). Thus \(1 = (g^n)^m = g^{mn} \). Hence \(g \) has finite order \(|g| \leq mn < \infty \) in \(G \), that is \(g \in T(G) \). Therefore \(gT(g) = 1T(G) \) as required.

(c) Call \(G \) a **torsion group** if \(T(G) = G \). If \(H \) is a subgroup of an abelian group \(G \), show that \(G \) is a torsion group if and only if both \(H \) and \(G/H \) are torsion groups.

Solution.
Suppose that \(H \) and \(G/h \) are torsion groups. Let \(g \in G \) be arbitrary. since \(G/H \) is a torsion group, the element \(gH \) has a finite order \(m \) in \(G/H \) and therefore \((gH)^m = g^mH = 1H \). This implies that \(g^m \in H \). Since \(H \) is a torsion group, we have \(|g^m| = n < \infty \). Then \(g^{mn} = (g^m)^n = 1 \) which implies that \(|g| \leq mn < \infty \) and \(g \in T(G) \). Since \(g \in G \) was arbitrary, it follows that \(G = T(G) \), as required.
Suppose now that G is a torsion group. Since $H \leq G$ and for every $h \in H$ the order of h in H is equal to the order of h in G (which is finite), it follows that every element of H has finite order, and so H is a torsion group. Let $gH \in G/H$ be an arbitrary element. Since G is a torsion group, $|g| = n < \infty$ and $g^n = 1$ in G. Therefore in G/H we have $(gH)^n = g^nH = 1H$, so that gH has order $\leq n < \infty$ in G/H. Thus every element of G/H has finite order, and G/H is a torsion group.

Ch. 2.9, Problem 18.

If $K \leq H \leq G$, where $K \triangleleft G$ and $[G : K]$ is finite, then prove that $[G/K : H/K]$ is also finite and that $[G/K : H/K] = [G : H]$.

Solution.

By a result of Problem 31 in Ch. 2.6 (whose solution is included below for completeness) we have $[G : K] = [G : H][H : K]$ and hence both $[G : H]$ and $[H : K]$ are finite.

By definition of the groups G/K we have $|G/K| = [G : K]$ and $|H/K| = [H : K]$.

Also by the result of Problem 9, Ch 2.9, above, H/K is a subgroup of G/K. Since the group G/K is finite, by Lagrange’s Theorem we have:

$$[G/K : H/K] = \frac{|G/K|}{|H/K|} = \frac{|G : K|}{|H : K|} = [G : H]$$

where the last equality holds since $[G : K] = [G : H][H : K]$.

Solution of Problem 31 in Ch. 2.6

We need to show that if $K \leq H \leq G$ then $[G : K] = [G : H][H : K]$. In particular, $[G : K]$ is finite if and only if both $[G : H]$ and $[H : K]$ are finite.

Solution.

Let I be a set (possibly infinite) such that $|H : K| = |I|$ and let J be a set (possibly infinite) such that $|G : H| = |J|$.

Choose a collection $(h_i)_{i \in I}$ of elements of H such that $H = \bigsqcup_{i \in I} h_i K$. Similarly, choose a collection $(g_j)_{j \in J}$ of elements of G such that $G = \bigsqcup_{j \in J} g_j H$. Then we have

$$G = \bigsqcup_{j \in J} g_j H = \bigsqcup_{j \in J} g_j (\bigsqcup_{i \in I} h_i K) = \bigsqcup_{j \in J, i \in I} g_j h_i K$$

Thus we have expressed G as a disjoint union of $|I| \cdot |J|$-many left cosets of K. By definition of $[G : K]$ this implies that $[G : K] = |I| \cdot |J| = [H : K][G : K]$, as required.