Problem 6.
Show that there are exactly two homomorphisms from C_6 to C_4.

Solution.
Let $C_6 = \langle a \rangle = \{1, a, a^2, a^3, a^4, a^5 \}$ and $C_4 = \langle b \rangle = \{1, b, b^2, b^3 \}$ where $|a| = 6$ and $|b| = 4$.

Suppose $\alpha : C_6 \to C_4$ is a homomorphism. By Theorem 2 in Ch 2.5, since $C_6 = \langle a \rangle$, any homomorphism $C_6 \to C_4$ is uniquely determined by its value on the generator a of C_6. Indeed, if $x = \alpha(a) \in C_4$ is known then $\alpha(a^i) = \alpha(a)^i = x^i$ for $i = 0, 1, 2, 3, 4, 5$.

There are at most 4 possibilities for $\alpha(a) \in C_4$ and we have to decide which ones correspond to homomorphisms from C_6 to C_4 and which ones do not.

Since $a^6 = 1$ in C_6, for any homomorphism $\alpha : C_6 \to C_4$ we have $\alpha(a)^6 = 1$ in C_4.

In C_4 we have $1^6 = 1, b^6 = b^2 \neq 1, (b^3)^6 = b^{12} = 1, (b^1)^6 = b^6 = b^2 \neq 1$. Since $b^6 \neq 1$ and $(b^3)^6 \neq 1$ in C_4, it follows that $\alpha(a) \neq b$ and $\alpha(a) \neq b^3$.

The other two possibilities, namely $\alpha(a) = 1$ and $\alpha(a) = b^2$ do give rise to homomorphisms $C_6 \to C_4$.

Namely, $\alpha_1 : C_4 \to C_4, \alpha_1(g) = 1$ for every $g \in C_6$ is obviously a homomorphism. Also, $\alpha_2 : C_6 \to C_4$ given by $\alpha_2(a) = \alpha_2(a^3) = \alpha_2(a^5) = b^2, \alpha_2(1) = \alpha_2(a^2) = \alpha_2(a^4) = 1$, can be seen to be a homomorphism by a direct check.

Thus there are exactly two homomorphisms from C_6 to C_4, namely α_1 and α_2.

Problem 12. In each case determine whether $\alpha : G \to G_1$ is an isomorphism.

(a) $G = G_1 = \mathbb{R}$, $\alpha(x) = 2x$ for $x \in \mathbb{R}$.

Answer: Yes, this is an isomorphism. The map α is obviously bijective and it is a homomorphism since $\alpha(x_1 + x_2) = 2(x_1 + x_2) = 2x_1 + 2x_2 = \alpha(x_1) + \alpha(x_2)$.

(b) $G = G_1 = \mathbb{Z}$ and $\alpha(b) = 2n$.

Answer: No, this is not an isomorphism. The map α is not onto. Indeed, $\alpha(\mathbb{Z}) = 2\mathbb{Z}$ is the set of all even integers, and, for example, $1 \not\in \alpha(\mathbb{Z})$.

(c) $G = G_1 = \mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4} \}$ and $\alpha(g) = g^2$ for $g \in G$.

Answer: No, this is not an isomorphism since α is not injective. Indeed, $\alpha(\overline{1}) = \overline{1} = \overline{1}$ and $\alpha(\overline{2}) = \overline{2} = \overline{2}$.

(d) $G = G_1 = \mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4} \}$ and $\alpha(g) = g^3$ for $g \in G$.

Answer: Yes, this is an isomorphism. Indeed, G is abelian and hence $\alpha(gh) = (gh)^3 = g^3h^3 = \alpha(g)\alpha(h)$ for any $g, h \in G$. Thus α is a homomorphism. By a direct computation we can check that α is a bijection:

\[
\alpha(\overline{1}) = \overline{1}, \; \alpha(\overline{2}) = \overline{3}, \; \alpha(\overline{3}) = \overline{2}, \; \alpha(\overline{4}) = \overline{4} = \overline{1}.
\]

Thus α is a bijective homomorphism, so that it is an isomorphism.

(e) $G = G_1 = \mathbb{Z}_7, \; \alpha(g) = 2g$.

Answer: Yes, this is an isomorphism. It is easy to see that this is a homomorphism (again because G is abelian). One can verify that α is bijective either by a direct check, as in part (d) or indirectly, as follows. Since $\alpha(\overline{1}) = \overline{1}$, it follows that the cyclic subgroup generated by $\overline{1}$ is a subset of the image of α. Since $\gcd(2, 7) = 1$,
we know that \(\langle 2 \rangle = \mathbb{Z}_7 \). Therefore \(\alpha \) is onto. Since \(\alpha \) is a function from a finite set to itself, the fact that it is onto implies that \(\alpha \) is a bijection.

Thus \(\alpha \) is a bijective homomorphism, so that it is an isomorphism.

(f) \(G = G_1 = \mathbb{Z}_8 \) and \(\alpha(g) = 2g \).

Answer: No, this is not a homomorphism since \(\alpha \) is not injective. In particular \(\alpha(0) = \alpha(1) = 0 \).

(g) \(G = G_1 = \mathbb{R}^+ = \{ x \in \mathbb{R} : x > 0 \} \) and \(\alpha(g) = g^2 \).

Answer: Yes, this is an isomorphism. The map \(\alpha(g) = g^2 \) is a homomorphism since \(G \) is abelian. It is also clear that \(\alpha : (0, \infty) \to (0, \infty), \alpha(x) = x^2 \), is both injective and onto.

(h) \(G = \mathbb{R}, G_1 = \mathbb{R}^+ \) and \(\alpha(g) = |g| \).

Answer: No, this is not an isomorphism. In fact, \(\alpha \) is not even a function from \(\mathbb{R} \) to \(\mathbb{R}^+ = (0, \infty) \). Indeed, \(0 \in \mathbb{R} \) but \(|0| = 0 \not\in \mathbb{R}^+ \).

(i) \(G = 2\mathbb{Z}, G_1 = 3\mathbb{Z}, \alpha(2k) = 3k \).

Answer: Yes, this is an isomorphism. Indeed, \(\alpha(x_1 + x_1) = \alpha(x_1 + x_2) = ax_1 + ax_2 = \alpha(x_1) + \alpha(x_2) \), so that \(\alpha \) is a homomorphism. It is obvious that \(\alpha \) is a bijection.

Problem 22.

Show that the groups \(\mathbb{R} \) and \(\mathbb{R}^+ \) are not isomorphic.

Solution.

Recall that \(\mathbb{R} \) is a group with respect to addition of real numbers and that \(\mathbb{R}^+ = \mathbb{R} \setminus \{0\} \) is a group with respect to multiplication of real numbers. The identity element in \(\mathbb{R} \) is 0 \(\in \mathbb{R} \) and the identity element in \(\mathbb{R}^+ \) is 1 \(\in \mathbb{R} \).

First, notice that every nontrivial (that is, nonzero) element in \(\mathbb{R} \) has infinite order. Indeed, if \(a \in \mathbb{R} \), \(a \neq 0 \) then for \(n \geq 1 \) the \(n \)-th additive power of \(a \) is \(na \) and \(na \neq 0 \) for every integer \(n \geq 1 \); hence \(|a| = \infty \) in \(\mathbb{R} \) for any \(a \neq 0 \). Of course, the order of 0 in \(\mathbb{R} \) is equal to 1. In particular, this shows that the group \(\mathbb{R} \) has no elements of order 2.

On the other hand, in \(\mathbb{R}^+ \) we do have an element of order 2, namely \(-1 \). Indeed, \(-1 = (-1)^1 \neq 1 \) but \((-1)^2 = 1 \), so that indeed \(-1 \) has order 2 in \(\mathbb{R}^+ \).

Since \(\mathbb{R}^+ \) has an element of order 2 but \(\mathbb{R} \) has no elements of order 2, these groups are not isomorphic.

Problem 25.

Are the additive groups \(\mathbb{Z} \) and \(\mathbb{Q} \) isomorphic?

Solution.

No, they are not isomorphic, because \(\mathbb{Z} \) is cyclic while \(\mathbb{Q} \) is not cyclic.

Indeed, \(\mathbb{Z} = \{1\} \) (as an additive group). The group \(\mathbb{Q} \) is not cyclic. Indeed, \(\{0\} \neq \mathbb{Q} \). Also, if \(a \in \mathbb{Q}, a \neq 0 \) then \(\langle a \rangle = \{na \mid n \in \mathbb{Z} \} \neq \mathbb{Q} \) since \(\frac{2}{7} \notin \langle a \rangle \). Thus for every element \(r \in \mathbb{Q} \) we have \(\langle r \rangle \neq \mathbb{Q} \), and hence \(\mathbb{Q} \) is not cyclic, as claimed.
Problem 26.
Show that $\mathbb{Z}_{14}^\ast \cong \mathbb{Z}_{18}^\ast$.

Solution.
We have

$$\mathbb{Z}_{14}^\ast = \{ [k]_{14} | \text{gcd}(k, 14) = 1 \} = \{ [1]_{14}, [3]_{14}, [5]_{14}, [9]_{14}, [11]_{14}, [3]_{14} \}$$

and

$$\mathbb{Z}_{18}^\ast = \{ [k]_{18} | \text{gcd}(k, 18) = 1 \} = \{ [1]_{18}, [5]_{18}, [7]_{18}, [11]_{18}, [13]_{18}, [17]_{18} \}$$

where both groups are considered with respect to multiplication.

We claim that both \mathbb{Z}_{14}^\ast and \mathbb{Z}_{18}^\ast are cyclic groups of order 6. Note that each of \mathbb{Z}_{14}^\ast and \mathbb{Z}_{18}^\ast has order 6.

Note also that in order to show that a group G of order 6 is a cyclic group of order 6, it is enough to find an element g of order 6 in such a group. Then we would have $|\langle g \rangle| = |g| = 6 = |G|$ and hence $G = \langle g \rangle$.

For \mathbb{Z}_{14}^\ast we have

$$[3]_{14}^1 = [3]_{14}, \quad [3]_{14}^2 = [9]_{14}, \quad [3]_{14}^3 = [27]_{14} = [-1]_{14} = [13]_{14}$$

$$[3]_{14}^4 = [-3]_{14} = [11]_{14}, \quad [3]_{14}^5 = [-9]_{14} = [5]_{14}, [3]_{14}^6 = [15]_{14} = [1]_{14}.$$

Thus we see that $|[3]_{14}| = 6$ and $\mathbb{Z}_{14}^\ast = \langle [3]_{14} \rangle$ is cyclic of order 6.

Similarly, for \mathbb{Z}_{18}^\ast we have

$$[5]_{18}^1 = [5]_{18}, \quad [5]_{18}^2 = [7]_{18}, \quad [5]_{18}^3 = [35]_{18} = [-1]_{18} = [17]_{18}$$

$$[5]_{18}^4 = [-5]_{18} = [13]_{18}, \quad [5]_{18}^5 = [-25]_{18} = [11]_{18}, \quad [5]_{18}^6 = [55]_{18} = [1]_{18}.$$

Hence $|[5]_{18}| = 6$ and $\mathbb{Z}_{18}^\ast = \langle [5]_{18} \rangle$ is cyclic of order 6.

Thus \mathbb{Z}_{14}^\ast and \mathbb{Z}_{18}^\ast are both cyclic of order 6. Therefore by Example 13 in Ch. 2.5 they are both isomorphic to $(\mathbb{Z}_6, +)$ and therefore to each other.