H/wk 14, Solutions to selected problems

Ch. 8.3, Problem 13
Let $G = (\mathbb{R}, +)$, and define $a \cdot z = e^{ia}z$ for $z \in \mathbb{C}$ and $a \in \mathbb{R}$.
Show that \mathbb{C} is a G-set, describe the action geometrically and find all orbitz and stabilizers.

Solution.
First, we check that \mathbb{C} is a G-set. For any $z \in \mathbb{C}$ we have $0 \cdot z = e^{0}z = z$. Also, for any $z \in \mathbb{C}$ and $a, b \in \mathbb{R}$ we have
$$a \cdot (b \cdot z) = a \cdot (e^{ib}z) = e^{ia}e^{ib}z = e^{i(a+b)}z = (a + b) \cdot z.$$ Thus this is indeed a group action of $G = (\mathbb{R}, +)$ on \mathbb{C}.

Recall, that in polar coordinates when two complex numbers are multiplies, their polar angles are added and their absolute values are multiplied. Recall also that $e^{ia} = \cos a + i\sin a$. Hence, geometrically, for $a \in \mathbb{R}$ and $z \in \mathbb{C}$ the point $a \cdot z = e^{ia}z$ is obtained by rotating the point z around the origin counterclockwise by angle a.

Thus for $z_0 \neq 0$ we have $Gz_0 = \{z \in \mathbb{C} : |z| = |z_0|\}$, so that the orbit Gz_0 is the circle around the origin of radius $|z_0|$. For $z_0 = 0 \in \mathbb{C}$ we have $Gz_0 = \{z_0\} = \{0\}$.

For $z_0 \in \mathbb{C}$, $z_0 \neq 0$ the stabilizer of z_0 in G is
$$\text{Stab}_G(z_0) = \{2\pi n : n \in \mathbb{Z}\}.$$ Finally, for $z_0 = 0 \in \mathbb{C}$ we have $\text{Stab}_G(z_0) = G$.

Ch. 8.3, Problem 23
Let X be a G-set and let $x, y \in X$.
(a) Show that the stabilizer $S(x)$ is a subgroup of G.

Solution.
Note that by definition of a group action $e \cdot x = x$, so that $e \in S(x)$.
Let $g, h \in S(x)$, that is $g \cdot x = x$ and $h \cdot x = x$.
Then
$$(gh) \cdot x = g \cdot (h \cdot x) = g \cdot x = x$$
and hence $gh \in S(x)$.
Finally, let $g \in S(x)$, so that $g \cdot x = x$.
Then
$$g^{-1} \cdot x = g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = e \cdot x = x$$
so that $g^{-1} \in S(x)$. Thus indeed $S(x) \leq G$ is a subgroup of G.

(b) If $x \in X$ and $g \in G$, show that $S(b \cdot x) = bS(x)b^{-1}$.

Solution.
Let $g \in S(b \cdot x)$ be arbitrary. Thus $g \cdot (b \cdot x) = b \cdot x$, so that $gb \cdot x = b \cdot x$. Applying b^{-1} to both sides we get
$$b^{-1} \cdot (gb \cdot x) = b^{-1} \cdot (b \cdot x) \implies b^{-1}gb \cdot x = x.$$ Hence $h := b^{-1}gb \in S(x)$ and therefore $g = bhb^{-1} \in bS(x)b^{-1}$. This shows that $S(b \cdot x) \subseteq bS(x)b^{-1}$.
Suppose now that $g \in bS(x)b^{-1}$ be arbitrary. Thus $g = bhb^{-1}$ for some $h \in S(x)$, that is for some h such that $h \cdot x = x$. Then
$$g \cdot (b \cdot x) = bhb^{-1} \cdot (b \cdot x) = bh \cdot ((b^{-1}b) \cdot x) = bh \cdot x = b \cdot (h \cdot x) = b \cdot x.$$
Thus \(g \in S(b \cdot x) \) and hence \(bS(x)b^{-1} \subseteq S(b \cdot x) \).

It follows that \(S(b \cdot x) = bS(x)b^{-1} \), as required.

(c) If \(S(x) \) and \(S(y) \) are conjugate subgroups of \(G \), show that \(|Gx| = |Gy| \).

Solution

We first need to establish the following general lemma:

Lemma. Let \(G \) be a group, \(H \leq G \) be a subgroup and let \(u \in G \). Then \([G : H] = [G : uHu^{-1}]\).

Proof of Lemma. By definition \([G : H] = |G/H| = |\{gH : g \in G\}|\) and \([G : uHu^{-1}] = |G/uHu^{-1}| = |\{guHu^{-1} : g \in G\}|\). Thus it suffices to construct a bijection between the sets \(G/H \) and \(G/uHu^{-1} \). Define \(f : G/H \to uHu^{-1} \) by \(f(gH) := ugu^{-1}uHu^{-1} \) for \(g \in G \). Note first that \(f \) is well-defined. We claim that \(f \) is one-to-one. We have verified that \(f \) is onto. Suppose now that \(f(g_1H) = f(g_2H) \) so that \(ugu^{-1}uHu^{-1} = ugu^{-1}uHu^{-1} \). Hence \(uga^{-1}u^{-1}z \) for some \(z \in uHu^{-1} \), that is for some \(h \in H \) we have \(uga^{-1}u^{-1} = uga^{-1}u^{-1} \). Therefore \(g_2 = g_1h \) and hence \(g_1H = g_2H \). Thus \(f \) is one-to-one. We have verified that \(f \) is bijective so that \([G : H] = [G : uHu^{-1}]\) as claim. This completes the proof of the lemma.

Now let \(x \) and \(y \) be as in part (c) of the problem. By the orbit-stabilizer formula (Lemma 3 in Ch 8.3) we have \([Gx] = [G : S(x)]\) and \([Gy] = [G : S(y)]\). Since \(S(x) \) and \(S(y) \) are conjugate in \(G \), the Lemma implies that \([G : S(x)] = [G : S(y)]\) and hence \([Gx] = [Gy]\) as required.

Ch. 8.4, Problem 2

Find all Sylow 2-subgroups of \(D_n \), where \(n \) is odd, and show explicitly that they are conjugate.

Solution.

Let \(n \geq 3 \) be odd. Then \(|D_n| = 2n\), so every Sylow 2-subgroup of \(D_n \) has order 2 and has the form \(\langle g \rangle = \{1, g\} \) where \(g \in D_n \) is an element of order 2. Thus to find all the Sylow 2-subgroups of \(D_n \) we need to find all elements of order 2 in \(D_n \).

Recall that \(D_n = \{1, a, a^2, \ldots, a^{n-1}, b, ba, \ldots ba^{n-1}\} \)

where \(|a| = n, |b| = 2\) and \(aba = b \).

Since \(|a| = |\langle a \rangle| = n \) is odd, for every \(g \in \langle a \rangle \) we have \(|g||n \) and hence \(|g| \neq 2 \).

We claim that \(|ba^i| = 2\) for every \(i = 0, 1, \ldots, n - 1 \). Indeed, \(aba = b \) implies \(ab = ba^{-1} \) and \(a^ib = a^{-i}b \) for all \(i \). Hence

\[
(ba^i)^2 = ba^iaba = bba^{-i}a^i = b^2 = 1.
\]

Since \(ba^i \neq 1 \), it follows that \(|ba^i| = 2\) for \(i = 0, 1, \ldots, n - 1 \). Thus \(D_n \) has \(n \) elements of order 2 and, correspondingly, \(n \) Sylow 2-subgroups, namely, the subgroups \(\langle ba^i \rangle = \{1, ba^i\} \) for \(i = 0, \ldots, n - 1 \). To see that they are all conjugate, it suffices to show that \(ba^i \) is conjugate to \(b \) for every \(i = 0, \ldots, n - 1 \).
Note that for every \(j \) we have \(a^{-j}ba^j = ba^j = b(a^2)^j \). Since \(n \) is odd and \(gcd(n, 2) = 1 \), it follows that \((a) = (a^2) \). Thus for every \(i = 0, \ldots, n-1 \) there exists \(j \) such that \(a^j = a^{2j} \) and hence \(ba^j = a^{-j}ba^j \) and \(\langle ba^j \rangle = a^{-j}(b)a^j \). Thus indeed all Sylow 2-subgroups of \(D_n \) are conjugate in \(D_n \).

Ch. 8.4, Problem 3

If \(P \) is a Sylow \(p \)-subgroup of \(G \), prove that \(P \) is the only Sylow \(p \)-subgroup of \(N(P) \).

Solution.

Let \(|G| = p^n \, m \) where \(n \geq 1 \) and \(gcd(p, m) = 1 \). Since \(P \leq G \) is a Sylow \(p \)-subgroup of \(G \), we have \(|P| = p^n \). We have \(P \leq N(P) \leq G \). Hence \(|P|/|N(P)| \) and \(|N(P)|/|G| \). Thus \(p^n/|N(P)| \) and \(|N(P)|/p^m \). Hence \(|N(P)| = p^n \, m' \) where \(m' \mid m \) and \(gcd(p, m') = 1 \).

Since \(|P| = p^n \) and \(P \leq N(P) \), it follows that \(P \) is a Sylow \(p \)-subgroup of \(N(P) \). By definition, every subgroup is normal in its normalizer, and hence \(P \triangleleft N(P) \).

By the Second Sylow Subgroup Theorem every Sylow \(p \)-subgroup \(P' \) of \(N(P) \) is conjugate to \(P \) in \(N(P) \). Since \(P \triangleleft N(P) \), this implies that \(P' = P \). Hence \(P \) is the unique Sylow \(p \)-subgroup of \(N(P) \), as claimed.

Ch. 8.4, Problem 4

Prove that every group of order 15 is cyclic.

Solution.

Let \(G \) be a group such that \(|G| = 15 = 3 \cdot 5 \). Let \(n_3 \) be the number of Sylow 3-subgroups of \(G \). Then by the Third Sylow Subgroup Theorem \(n_3 \mid 5 \) and \(n_3 \equiv 1 \) mod 3. The condition \(n_3 \mid 5 \) implies that \(n_3 = 1 \) or \(n_3 = 5 \). The case \(n_3 = 5 \) is impossible since \(5 \not\equiv 1 \) mod 3. Thus \(n_3 = 1 \). Let \(H \leq G \) be the Sylow 3-subgroup of \(G \), so that \(|H| = 3 \). Since for every \(g \in G \) we have \(|gHg^{-1}| = |H| = 3 \) and \(gHg^{-1} \leq G \) is also a Sylow 3-subgroup of \(G \), the condition \(n_3 = 1 \) implies that \(gHg^{-1} = H \). Hence \(H \triangleleft G \) is normal in \(G \).

Let \(n_5 \) be the number of Sylow 5-subgroups of \(G \). Then by the Third Sylow Subgroup Theorem \(n_5 \mid 3 \) and \(n_5 \equiv 1 \) mod 5. The condition \(n_5 \mid 3 \) implies that \(n_5 = 1 \) or \(n_5 = 5 \). The case \(n_5 = 3 \) is impossible since \(3 \not\equiv 1 \) mod 5. Thus \(n_5 = 1 \).

As above, this implies that if \(K \leq G \) is a Sylow 5-subgroup (that is \(|K| = 5 \)) then \(K \triangleleft G \).

We claim that \(H \cap K = \{1\} \). Indeed, suppose \(a \in H \cap K \). Then, since \(a \in H \), we have \(|a||H| \), that is \(|a| \mid 3 \). Similarly, since \(a \in K \), we have \(|a||K| \), that is \(|a| \mid 5 \).

Hence \(|a| = 1 \) and therefore \(a = 1 \). Thus indeed \(H \cap K = \{1\} \).

Finally we have \(|H| \cdot |K| = 3 \cdot 5 = |G| \).

Thus \(H \triangleleft G \) and \(K \triangleleft G \). Then \(K \cap H = \{1\} \) and \(|H| \cdot |K| = |G| < \infty \). Hence by Theorem 6 in Ch 2.8 we have \(G \cong H \times K \). Since \(|H| = 3 \) is a prime, it follows that \(H \) is cyclic of order 3 and thus \(H \cong \mathbb{Z}_3 \). Similarly, since \(|K| = 5 \) is a prime, it follows that \(K \) is cyclic of order 5 and thus \(K \cong \mathbb{Z}_5 \). Thus \(G \cong H \times K \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \). Since \(gcd(3, 5) = 1 \), we have \(\mathbb{Z}_3 \times \mathbb{Z}_5 \cong \mathbb{Z}_{15} \). Therefore \(G \cong \mathbb{Z}_{15} \), so that \(G \) is cyclic, as required.

Ch. 8.4, Problem 13

If \(|G| = p^n \, m \) where \(n \geq 1 \), \(p \) is a prime and \(p > m \), show that the Sylow \(p \)-subgroup of \(G \) is normal in \(G \).
Solution.
Let \(n_p \) be the number of Sylow \(p \)-subgroups of \(G \). By the 3-d Sylow Subgroup Theorem we know that \(n_p |m \) and that \(n_p \equiv 1 \mod p \).

Since \(m < p \) and \(n_p |m \), it follows that \(1 \leq n_p \leq m < p \). Since we also know that \(n_p \equiv 1 \mod p \), it follows that \(n_p = 1 \). Let \(P \) be a Sylow \(p \)-subgroup of \(G \). Since for every \(q \in G \), \(g^{-1}Pg \) is also a Sylow \(p \)-subgroup of \(G \) and since \(n_p = 1 \), it follows that for every \(g \in G \), \(g^{-1}Pg = P \). Hence \(P \) is normal in \(G \), as claimed.

Ch. 8.4, Problem 14
If \(|G| = p^2q \) where \(p \) and \(q \) are primes, show that \(G \) is not simple.

Solution.
Suppose first that \(p = q \). Then \(|G| = p^3 \) and \(G \) is a finite \(p \)-group. As was proved in class, every finite \(p \)-group has a nontrivial center, \(Z(G) \neq \{1\} \). If \(Z(G) \neq G \) then \(Z(G) \triangleleft G \) and \(Z(G) \neq G, Z(G) \neq \{1\} \), so that \(G \) is not simple. If \(Z(G) = p^3 \) then \(G \) is abelian. By the First Sylow Subgroup Theorem \(G \) has a subgroup \(H \) of order \(p \). Then \(H \neq \{1\}, H \neq G \) and \(H \triangleleft G \) and hence \(G \) is not simple.

Suppose now that \(p \neq q \). By the Third Sylow Subgroup Theorem \(n_p |q \) and \(n_p \equiv 1 \mod p \). Hence \(n_p \in \{1, q\} \) and \(n_p = 1 + pk \) for some integer \(k \). If \(n_p = 1 \) then the Sylow \(p \)-subgroup of \(G \) is a proper normal subgroup in \(G \) and hence \(G \) is not simple.

Suppose now that \(n_p = q \). Since \(n_p - 1 = pk \), we have \(q - 1 = pk \) and hence \(p \leq q - 1 \).

Again applying the Third Sylow Subgroup Theorem we get \(n_p |p^2 \) and \(n_p \equiv 1 \mod q \). Thus \(n_p \in \{1, p, p^2\} \). If \(n_p = 1 \), then he Sylow \(q \)-subgroup of \(G \) is a proper normal subgroup in \(G \) and hence \(G \) is not simple, as required.

If \(n_p = p \) then the condition \(n_p \equiv 1 \mod q \) implies \(q |p - 1 \) and hence \(q \leq p - 1 \).

Since we already know that \(p \leq q - 1 \), this yields a contradiction.

Thus \(n_p = p^2 \). Hence \(n_p \equiv 1 \mod q \) implies \(q |(p^2 - 1) \), that is \(q |(p - 1)(p + 1) \).

Since \(q \) is a prime, it follows that \(q |p + 1 \) or \(q |p - 1 \).

If \(q |p - 1 \) then \(q \leq p - 1 \). Since we already know that \(p \leq q - 1 \), this again yields a contradiction.

Thus \(q |p + 1 \) and hence \(q \leq p + 1 \). Since we already know that \(p \leq q - 1 \), we have \(p + 1 \leq (q - 1) + 1 = q \). Thus \(q \leq p + 1 \leq q \) and hence \(q = p + 1 \).

Since both \(p \) and \(q \) are primes and \(q = p + 1 \), the numbers \(p \) and \(q \) cannot both be odd. The only even prime is 2 and hence \(p = 2, q = 3 \). Therefore \(|G| = p^2q = 2^2 \cdot 3 = 12 \).

By Theorem 5 in Ch 8.4 every group of order 12 is isomorphic to one of \(C_{12}, C_6 \times C_2, A_4, D_6 \) or \(Q_6 \). None of these groups are simple and hence \(G \) is not simple, as required.

We can check that none of the groups in the above list are simple directly. Indeed, if \(C_{12} = \langle x \rangle \) is cyclic of order 12, then \(\langle x^2 \rangle \) has order 6 and is a proper normal subgroup of \(C_{12} \).

Similarly, the subgroup \(C_6 \times \{1\} \) is a subgroup of order 6 in the abelian group \(C_6 \times C_2 \) and thus is a proper normal subgroup.

We have seen in class that \(V = \{e, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\} \leq A_4 \) is a proper normal subgroup in \(A_4 \) (for example, because it has index 2).

Also, for \(D_6 = \{1, a, \ldots, a^5, b, ba, \ldots, ba^5\} \) with \(|a| = 6, |b| = 2 \) and \(aba = b \) the subgroup \(\langle a \rangle \) has index 2 in \(D_6 \) and is therefore a proper normal subgroup.
Finally, for the group $Q_6 = \{1, a, \ldots, a^5, b, ba, \ldots, ba^5\}$, where $|a| = 6$, $aba = b$ and $b^2 = a^3$, the subgroup $\langle a \rangle$ has index 2 in D_6 and is therefore a proper normal subgroup.