Ch. 4.1, Problem 5
(a) Find the number of roots of $x^2 - x$ in \mathbb{Z}_4, $\mathbb{Z}_2 \times \mathbb{Z}_2$, any integral domain, \mathbb{Z}_6.
(b) Find a commutative ring in which $x^2 - x$ has infinitely many roots.

Solution.
(a) By a direct check we verify that the only roots of $x^2 - x = 0$ in \mathbb{Z}_4 are 0 and 1. Thus $x^2 - x = 0$ has 2 roots in \mathbb{Z}_4.

For every element a of \mathbb{Z}_2 we have $a^2 = a$ and hence for every $(a, b) \in \mathbb{Z}_2 \times \mathbb{Z}_2$ we have $(a, b)^2 = (a^2, b^2) = (a, b)$, so that (a, b) is a root of $x^2 - x = 0$. Thus $x^2 - x = 0$ has $|\mathbb{Z}_2 \times \mathbb{Z}_2| = 4$ roots in $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Suppose now that R is an integral domain. It is easy to see that 3 is such a root since $3^2 = 0$ or $(a, b) = (\mathbb{Z}_2 \times \mathbb{Z}_2)$, so that (a, b) is a root of $x^2 - x = 0$. Since R is an integral domain, it follows that either $a = 0$ or $a = 1$, that is, either $a = 0$ or $a = 1$. Thus $x^2 - x = 0$ has exactly 2 roots in R.

By a direct check we verify that $x^2 - x = 0$ has exactly 4 roots in \mathbb{Z}_6, namely $0, 1, 3$ and 4.

(b) Consider the ring $R = \mathbb{Z}_2^\infty$ where $R = \{(a_1, a_2, a_3, \ldots) | a_i \in \mathbb{Z}_2\}$ and where

\[
(a_1, a_2, a_3, \ldots) + (b_1, b_2, b_3, \ldots) = (a_1 + b_1, a_2 + b_2, a_3 + b_3, \ldots)
\]
\[
(a_1, a_2, a_3, \ldots) \cdot (b_1, b_2, b_3, \ldots) = (a_1b_1, a_2b_2, a_3b_3, \ldots)
\]

for $a_i, b_i \in \mathbb{Z}_2$.

It is easy to see that R is a commutative ring. Moreover, since for every $a \in \mathbb{Z}_2$ we have $a^2 = a$, it follows that for every $x = (a_1, a_2, a_3, \ldots) \in R$ we have

\[
x^2 = (a_1^2, a_2^2, a_3^2, \ldots) = (a_1, a_2, a_3, \ldots) = x
\]

and hence $x^2 - x = 0$.

Since $R = \mathbb{Z}_2^\infty$ is also infinite and commutative, it satisfies all the required properties.

Ch. 4.1, Problem 17
In each case factor $f(x)$ into linear factors in $F[x]$.

(a) $f(x) = x^4 + 12$, $F = \mathbb{Z}_{13}$.

Solution.
We have $12 = 2^2$ in \mathbb{Z}_{13}. Hence in $\mathbb{Z}_{13}[x]$ we have $x^4 + 12 = x^4 - 1 = x^4 - 1^2 = (x^2 - 1)(x^2 + 1)$.

Moreover, in \mathbb{Z}_{13} we have $2 = -25 = -5^2$. Hence in $\mathbb{Z}_{13}[x]$ we have $x^4 + 12 = (x^2 - 1)(x^2 + 1) = (x^2 - 5^2) = (x - 1)(x + 1)(x - 5)(x + 5)$.

(b) $f(x) = x^3 + 1$, $F = \mathbb{Z}_7$.

Solution.
In \mathbb{Z}_7 we have $-1^3 + 1 = 0$, so that -1 is a root of $f(x) = x^3 + 1$ in \mathbb{Z}_7. Hence $(x + 1)/f(x)$ in $\mathbb{Z}_7[x]$. By performing division with the remainder, we get $x^3 + 1 = (x + 1)(x^2 - x + 1) = \mathbb{Z}_7[x]$. We then look for roots of $x^2 - x + 1$ in \mathbb{Z}_7. It is easy to see that 3 is such a root since $3^2 - 3 + 1 = 7 \equiv 0 \mod 7$. Dividing
$x^2 - x + 1$ with the remainder by $x - 3$ in $\mathbb{Z}_7[x]$ we get $x^2 - x + 1 = (x - 3)(x + 2)$ in $\mathbb{Z}_7[x]$. Hence

$$x^3 + 1 = (x + 1)(x - 3)(x + 2)$$

in $\mathbb{Z}_7[x]$.

Ch. 4.1, Problem 23

In each case determine the multiplicity of a as a root of $f(x)$.

(b) $f(x) = x^4 + 2x^2 + 2x + 2$, $a = -1$, $R = \mathbb{Z}_3$.

Solution.

Dividing $f(x)$ by $x + 1$ with the remainder in $\mathbb{Z}_3[x]$, we get:

$$f(x) = x^4 + 2x^2 + 2x + 2 = (x + 1)(x^3 - x^2 + 2)$$

in $\mathbb{Z}_3[x]$.

Observe that $a = -1$ is a root of $x^3 - x^2 + 2$ in $\mathbb{Z}_3[x]$. Dividing $x^3 - x^2 + 2$ by $x + 1$ in $\mathbb{Z}_3[x]$, we get:

$$x^3 - x^2 + 2 = (x + 1)(x^2 - 2x + 2)$$

We see that $1^2 - 2 \cdot 1 + 2 = 1 \neq 0$ in \mathbb{Z}_3, so that $a = -1$ is not a root of $x^2 - 2x + 2$ in $\mathbb{Z}_3[x]$. Hence the multiplicity of $a = -1$ as a root of $f(x)$ in $\mathbb{Z}_3[x]$ is equal to 2.

Ch. 4.1, Problem 24

If R is a commutative ring, a polynomial $f(x)$ in $R[x]$ is said to annihilate R if $f(a) = 0$ for every $a \in R$.

(a) Show that $x^p - x$ annihilates \mathbb{Z}_p for a prime $p \geq 2$.

Solution.

By Fermat’s theorem, for every $a \in \mathbb{Z}$ we have $a^p \equiv a \mod p$, that is $\overline{a}^p = \overline{a}$, $\overline{a}^p - \overline{a} = 0$ in \mathbb{Z}_p.

Thus indeed $x^p - x$ annihilates \mathbb{Z}_p.

(b) Show that $x^5 - x$ annihilates \mathbb{Z}_{19}.

Solution.

Can be verified via a direct check and also follows from (c).

(c) Show that if $p \neq 2$ is a prime then $x^p - x$ annihilates \mathbb{Z}_{2p}.

Solution.

Since p is an odd prime, we have $gcd(2, p) = 1$. Hence by Corollary 1 to Theorem 8 in Ch 3.4 we have that $\mathbb{Z}_{2p} \cong \mathbb{Z}_2 \times \mathbb{Z}_p$ as rings.

Thus it suffices to show that $x^p - x$ annihilates $\mathbb{Z}_2 \times \mathbb{Z}_p$. By part (a) we already know that for every $b \in \mathbb{Z}_p$ we have $b^p = b$. A direct check shows that for every $a \in \mathbb{Z}_2$ we have $a^2 = a$.

Therefore for every $a \in \mathbb{Z}_2$, $b \in \mathbb{Z}_p$ we have

$$(a, b)^p = (a^p, b^p) = (a, b)$$

and hence $(a, b)^p - (a, b) = (0, 0)$

so that $x^p - x$ annihilates $\mathbb{Z}_2 \times \mathbb{Z}_p$ as required.

If $p > 3$ is a prime, show that $x^p - x$ annihilates \mathbb{Z}_{3p}.

Solution.

Since $p > 3$ is a prime, we have $gcd(3, p) = 1$. Hence by Corollary 1 to Theorem 8 in Ch 3.4 we have that $\mathbb{Z}_{3p} \cong \mathbb{Z}_3 \times \mathbb{Z}_p$ as rings. Thus it suffices to show that $x^p - x$ annihilates $\mathbb{Z}_3 \times \mathbb{Z}_p$.

By part (a) we know that \(x^p - x\) annihilates \(\mathbb{Z}_p\). It is easy to see by a direct check that \(x^p - x\) annihilates \(\mathbb{Z}_3\). Indeed, in \(\mathbb{Z}_3\) we have \(0^p = 0, 1^p = 1\) and \(-1^p = -1\), where the last equality holds since \(p > 3\) is a prime and hence \(p\) is odd. Therefore for every \(a \in \mathbb{Z}_3\), \(b \in \mathbb{Z}_p\) we have

\[(a, b)^p = (a^p, b^p) = (a, b)\]so that \(x^p - x\) annihilates \(\mathbb{Z}_3 \times \mathbb{Z}_p\) as required.

(c) Does \(x^5 - x\) or \(x^7 - x\) annihilate \(\mathbb{Z}_{35}\)?

Solution.

Since \(\gcd(5, 7) = 1\), it follows that \(\mathbb{Z}_{35} \cong \mathbb{Z}_5 \times \mathbb{Z}_7\) as rings. Thus \(x^p - x\) annihilates \(\mathbb{Z}_{35}\) if and only if it annihilates each of \(\mathbb{Z}_5, \mathbb{Z}_7\).

For \(\mathbb{Z}_7\) we have \(\mathbb{Z}_7^2 = \{0, 1, \ldots, 6\} \neq \{7\} = \mathbb{Z}_7\). Thus \(x^5 - x\) does not annihilate \(\mathbb{Z}_7\) and hence it does not annihilate \(\mathbb{Z}_{35}\).

Also, for \(\mathbb{Z}_5\) we have \(\mathbb{Z}_5^7 = \{0, 1, \ldots, 4\} \neq \{5\} = \mathbb{Z}_5\). Thus \(x^7 - x\) does not annihilate \(\mathbb{Z}_5\) and hence it does not annihilate \(\mathbb{Z}_{35}\).

(f) Show that there exists a polynomial of degree \(n\) in \(\mathbb{Z}_n[x]\) that annihilates \(\mathbb{Z}_n\).

Solution.

Take

\[f(x) = x(x - 1)(x - 2)\ldots(x - n - 1) \in \mathbb{Z}_n[x].\]

Ch. 4.2, Problem 5

In each case determine whether the polynomial is irreducible over each of the fields \(\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5\) and \(\mathbb{Z}_7\).

(a) \(x^2 - 3\).

Solution.

We claim that \(x^2 - 3\) is irreducible over \(\mathbb{Q}\). Since \(\deg(x^2 - 3) = 2\), to show that \(x^2 - 3\) is irreducible over \(\mathbb{Q}\) it suffices to prove that \(x^2 - 3\) has no rational roots. We have \(x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3})\) in \(\mathbb{R}[x]\). Since \(\mathbb{R}\) is an integral domain, it follows that \(x^2 - 3\) has exactly two roots in \(\mathbb{R}\), namely \(\pm \sqrt{3}\). Since both of these roots are irrational, it follows that \(x^2 - 3\) has no rational roots and hence it is irreducible over \(\mathbb{Q}\).

We have \(x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3})\) in \(\mathbb{R}[x]\) and in \(\mathbb{C}[x]\). Hence \(x^2 - 3\) is reducible over \(\mathbb{R}\) and over \(\mathbb{C}\).

Also, the following holds in \(\mathbb{Z}_2[x]\):

\[x^2 - 3 = (x - 1)(x + 1)\]

and hence \(x^2 - 3\) is reducible over \(\mathbb{Z}_2\).

Similar, in \(\mathbb{Z}_3[x]\) we have:

\[x^2 - 3 = x^2 - 0 = x^2 = x \cdot x\]

and hence \(x^2 - 3\) is reducible over \(\mathbb{Z}_3\).

A direct check shows that \(x^2 - 3\) has no roots in \(\mathbb{Z}_5\). Indeed, in \(\mathbb{Z}_5\) we have \(0^2 - 3 = -3 \neq 0, 1^2 - 3 = -2 \neq 0, 2^2 - 3 = 4 \neq 0, 3^2 - 3 = 0 \neq 0\) and \(4^2 - 3 = 5 \neq 0\). Hence \(x^2 - 3\) is irreducible over \(\mathbb{Z}_5\).

Similarly, a direct check shows that \(x^2 - 3\) has no roots in \(\mathbb{Z}_7\) and hence it is irreducible over \(\mathbb{Z}_7\).

(b) \(x^2 + x + 1\)
Via applying the quadratic formula we find the complex roots of \(x^2 + x + 1\): \(x_{1,2} = -\frac{1 \pm \sqrt{3} i}{2}\), so that in \(\mathbb{C}[x]\) we have \(x^2 + x + 1 = \left(x - \frac{1 - \sqrt{3} i}{2}\right)\left(x - \frac{1 + \sqrt{3} i}{2}\right)\).

Since \(\mathbb{C}\) is an integral domain, it follows that \(x_{1,2} = -\frac{1 \pm \sqrt{3} i}{2}\) are the only roots of \(x^2 + x + 1\) in \(\mathbb{C}\). Since none of these roots belong to \(\mathbb{Q}\) and none of them belong to \(\mathbb{R}\), it follows that \(x^2 + x + 1\) has no roots in \(\mathbb{Q}\) and no roots in \(\mathbb{R}\). Since \(\text{deg}(x^2 + x + 1) = 2\), this implies that \(x^2 + x + 1\) is irreducible over \(\mathbb{Q}\) and it is also irreducible over \(\mathbb{R}\).

Since \(x^2 + x + 1 = \left(x - \frac{1 - \sqrt{3} i}{2}\right)\left(x - \frac{1 + \sqrt{3} i}{2}\right)\) in \(\mathbb{C}[x]\), it follows that \(x^2 + x + 1\) is reducible over \(\mathbb{C}\).

A direct check shows that \(x^2 + x + 1\) has no roots in \(\mathbb{Z}_2\). Indeed, \(\overline{0}^2 + \overline{0} + \overline{1} = \overline{1} \neq \overline{0}\) and \(\overline{2}^2 + \overline{2} = \overline{3} \neq \overline{0}\) in \(\mathbb{Z}_2\). Hence \(x^2 + x + 1\) is irreducible over \(\mathbb{Z}_2\).

On the other hand, \(x^2 + x + 1\) has a root in \(\mathbb{Z}_3\), namely \(1\). Hence \(x^2 + x + 1\) is reducible over \(\mathbb{Z}_3\). One can also see this directly by checking that in \(\mathbb{Z}_3[x]\) we have \(x^2 + x + 1 = (x + 1)(x + 2)\). A direct check shows that \(x^2 + x + 1\) has no roots in \(\mathbb{Z}_5\). Indeed, in \(\mathbb{Z}_5\) we have \(\overline{0}^2 + \overline{0} + \overline{1} = \overline{1} \neq \overline{0}\) and \(\overline{2}^2 + \overline{2} + \overline{3} = \overline{3} \neq \overline{0}\). Hence \(x^2 + x + 1\) is irreducible over \(\mathbb{Z}_5\).

On the other hand, \(x^2 + x + 1\) has a root in \(\mathbb{Z}_7\), namely \(2\). Hence \(x^2 + x + 1\) is reducible over \(\mathbb{Z}_7\).

(c) \(x^3 + x + 1\).

Solution.

Note that \(\lim_{x \to -\infty} x^3 + x + 1 = -\infty\) and \(\lim_{x \to \infty} x^3 + x + 1 = \infty\). Hence by the Intermediate Value Theorem from calculus there exists \(x_0 \in \mathbb{R}\) such that \(x_0^3 + x_0 + 1 = 0\). Thus \(x^3 + x + 1\) has a root in \(\mathbb{R}\) and hence it is reducible over \(\mathbb{R}\).

Since this real root \(x_0\) also belongs to \(\mathbb{C}\), it follows that \(x^3 + x + 1\) is reducible over \(\mathbb{C}\).

We claim that \(x^3 + x + 1\) is irreducible over \(\mathbb{Q}\). Indeed, suppose, on the contrary, that \(x^3 + x + 1\) is reducible over \(\mathbb{Q}\). Since \(\text{deg}(x^3 + x + 1) = 3\), it follows that \(x^3 + x + 1\) has a root \(r \in \mathbb{Q}\). Then Theorem 9 in Ch 9.1 implies that \(r = \frac{e}{d}\) where \(e, d \in \mathbb{Z}\) and \(\gcd(e, d) = 1\). Hence \(\gcd(e, d) = 1\) implies \(e, d \in \{1, -1\}\). Therefore \(r = \frac{2}{3}\) implies \(\gcd(e, d) = 3\). However \(3 \cdot 1 + 1 = 1 - 1 \neq 0\) in \(\mathbb{Q}\), yielding a contradiction. Thus indeed \(x^3 + x + 1\) is irreducible over \(\mathbb{Q}\).

Ch. 4.2, Problem 6

Let \(R\) be an integral domain and let \(f(x) \in R[x]\) be monic. If \(f(x)\) factors properly in \(R[x]\), show that it has a proper factorization \(f(x) = g(x)h(x)\) where \(g(x)\) and \(h(x)\) are both monic.

Solution.

Let \(n = \text{deg}(f)\). Let \(f(x) = g_1(x)h_1(x)\) be a proper factorization of \(f(x)\) in \(R[x]\). Thus \(\text{deg}g_1 = m, \text{deg}h_1 = k\) where \(m + k = n\) and \(0 < m, k < n\).

We have \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0\) (since \(f\) is monic), \(g_1(x) = b_m x^m + \cdots + b_0, h_1 = c_k x^k + \cdots + c_0\) where \(b_m, c_k \in R, b_m \neq 0, c_k \neq 0\).

Then the leading coefficient of \(g_1 h_1\) is equal to \(b_m c_k\). Since \(f\) is monic, it follows that \(b_m c_k = 1\) in \(R\). Since \(R\) is an integral domain (and thus is commutative) this means that \(b_m\) and \(c_k\) are units in \(R\) and \(b_m = c_k^{-1}\).
Put \(g(x) = c_k g_1(x) = c_k(b_m x^m + \cdots + b_0) = c_k b_m x^m + \cdots + c_k b_0 = x^m + \cdots + c_k b_0, \) so that \(g(x) \) is monic. Also put \(h(x) = b_m h_1(x) = b_m(c_k x^k + \cdots + c_0) = b_m c_k x^k + \cdots + b_m c_0 = x^k + \cdots + b_m c_0, \) so that \(h(x) \) is monic.

We also have

\[
 f(x) = g_1(x) h_1(x) = c_k b_m g_1(x) h_1(x) = c_k g_1(x) b_m h_1(x) = g(x) h(x).
\]

Thus we have found a proper factorization of \(f(x) \) as a product of two monic polynomials in \(R[x] \).