Chapter 13: The Real Numbers

13.8. If S is a bounded set of real numbers, and S contains sup(S) and inf(S), then S is a closed interval—FALSE. Counterexamples include the finite set \(S = \{0, 1\} \) and the uncountable set \(S = [0, 1] \cup [2, 3] \).

13.9. If \(f: \mathbb{R} \to \mathbb{R} \) is defined by \(f(x) = \frac{2x - 8}{x^2 + 17} \), then the supremum of the image of \(f \) is 1—TRUE. We show that 1 is an upper bound on \(f(x) \) and that 1 is in the image. The latter claim follows from \(f(5) = 2/2 = 1 \).

Since \(x^2 - 8x + 17 \leq (x - 4)^2 + 1 \), this quadratic polynomial is never zero. Hence the inequality \(f(x) \leq 1 \) is equivalent to \(2x - 8 \leq x^2 - 8x + 17 \), which is equivalent to \(0 \leq x^2 - 10x + 25 \). Since \(x^2 - 10x + 25 = (x - 5)^2 \geq 0 \), the desired inequality is always true.

13.10. Every positive irrational number is the limit of a nondecreasing sequence of rational numbers—TRUE. For each irrational number \(\alpha \), let \(a_n \) denote the decimal expansion of \(\alpha \) to \(n \) places. This defines a nondecreasing sequence of rational numbers with limit \(\alpha \).

13.11. a) If \((a) \) converges and \(\lim a_n < \lim b_n \), then there exists \(N \in \mathbb{N} \) such that \(n \geq N \) implies \(a_n < b_n \)—FALSE. Let \(L = \lim a_n \) and \(M = \lim b_n \). Let \(\varepsilon = (M - L)/2 \). The definition of convergence implies that there exist \(N_1 \) and \(N_2 \) such that \(n \geq N_1 \implies |a_n - L| < \varepsilon \) and \(n \geq N_2 \implies |b_n - M| < \varepsilon \). Let \(N = \max\{N_1, N_2\} \). For \(n \geq N \), we have \(a_n < L + \varepsilon < M - \varepsilon < b_n \).

b) If \((a) \) and \((b) \) converge and \(\lim a_n \leq \lim b_n \), then there exists \(N \in \mathbb{N} \) such that \(n \geq N \) implies \(a_n \leq b_n \)—FALSE. If \(a_n = 2/n \) and \(b_n = 1/n \), then \(\lim a_n = 0 = \lim b_n \), so \(\lim a_n \leq \lim b_n \), but \(a_n > b_n \) for all \(n \).

13.12. If \(S \) is a bounded set of real numbers, and \(x_n \to \sup(S) \) and \(y_n \to \inf (S) \), then \(\lim x_n + y_n \in S \)—FALSE. Consider \(S = (1, 2) \). If \(x_n = 1 \) for all \(n \), and \(y_n = 2 \) for all \(n \), then \(x_n + y_n \) converges to 3, which is not in \(S \).

The counterexample still works when we consider \(\frac{x_n + y_n}{2} \), since \(\frac{x_n + y_n}{2} = \frac{3}{2} \notin S \).

13.13. If \(x > 0 \) and \(x^2 \neq 2 \), then \(y = \frac{1}{2}(x + \sqrt{x}) \) satisfies \(y^2 > 2 \). We show that \(y^2 - 2 \) is a square. We have
\[
y^2 - 2 = \left(\frac{1}{2} x + \frac{\sqrt{x}}{2} \right)^2 - 2 = \frac{1}{4} (x^2 + 4 + \frac{2\sqrt{x}}{x}) - \frac{8}{2} = \frac{1}{4} (x^2 - 4 + \frac{4}{x}) = \frac{1}{4} (x - \frac{2}{x})^2 > 0.
\]
Note that \(x^2 \neq 2 \) implies that \(x - 2/x \neq 0 \).

13.14. To six places, the base 3 expansion of \(1/10 \) is 0.002200. We have \((73/729) > (1/10) > (72/729) \). The base 3 expansion of 72 is 2200, since \(72 = 2 \cdot 27 + 2 \cdot 9 + 0 \cdot 3 + 0 \cdot 0 \cdot 1 \). Dividing by 729 = 3² yields 0.002200. Since
1/10 exceeds 72/729 by less than 1/729, the expansion of 1/10 agrees with this through the first six places.

13.15. Reciprocals of positive integers with one-digit expansions. In base \(k \), we seek positive integer solutions to \(\frac{1}{n} = \frac{1}{k} \) with \(1 \leq i < k \). Rewriting this as \(n = ki \), we get a solution for each divisor of \(k \) less than \(k \). For \(k = 10 \), the fractions are 1/2, 1/5, 1/10. For \(k = 9 \), they are 1/3, 1/9, 1/11. For \(k = 8 \), they are 1/2, 1/4, 1/8.

13.16. In base 26, the string BAD represents the decimal number 679. \(D_{26}^0 + A_{26}^1 + B_{26}^2 = 3 + 0 + 1(676) = 679 \).

In base 26, the string \(M M M M M M M M M M M \cdots \) represents 12/25. Let \(x \) be the desired value. Note that the value of \(M \) is 12. From \(26x = M M M M M M M M M M M \cdots \), we have \(26x = 12 + x \), and thus \(x = 12/25 \).

13.17. When \(q \) is odd, the base \(q \) expansion of 1/2 consists of \((q - 1)/2\) in each position. See the more general result in the next solution.

13.18. When \(q \equiv 1 \pmod{3} \), the base \(q \) expansion of 1/3 consists of \((q - 1)/3\) in each position. In general, we prove that if \(q \equiv 1 \pmod{k} \), then the base \(q \) expansion of 1/k consists of \((q - 1)/k\) in each position.

The alternative expansion of 1 in base \(q \) consists of \(q - 1 \) in every position. Since \(k(q - 1) \), the distributive law for series allows us to calculate the sum of the series \(\sum (q - 1)x^m \) by dividing each coefficient by an infinite sum

\[
\sum \frac{a_{q-1}}{k} q^{-m}.
\]

13.19. If \(f \) is a bounded function on an interval \(I \), then \(\sup((-f(x); x \in I)) = -\inf(f(x); x \in I) \). Let \(\alpha = \sup(-f(x); x \in I) \), and \(S = \{f(x); x \in I\} \). We have \(\alpha \geq -f(x) \) and hence \(-\alpha \leq f(x) \) for all \(x \in I \), so \(-\alpha \) is a lower bound for \(S \).

On the other hand, Prop 13.15 yields a sequence \((x) \) of numbers in \(I \) such that \(-f(x_n) \to \alpha \). Thus \(f(x_n) \to -\alpha \). We now apply the analogue of Prop 13.15 for infimum. Since \(-\alpha \) is a lower bound for \(S \) and \(-f(x_n) \) defines a sequence of elements of \(S \) converging to \(-\alpha \), we conclude that \(-\alpha = \inf(S) \).

13.20. Sequence converging to infimum or to supremum.

a) \(S = \{x \in \mathbb{R}; 0 \leq x < 1\} \). We have \(x_n = 1 - 1/(n + 1) \to 1 = \sup(S) \) and \(y_n = 1/(n + 1) \to 0 = \inf(S) \).

b) \(S = \{\frac{2n+1}{2^k}; n \in \mathbb{N}\} \). The set \(S \) consists of the terms of a sequence that begins 1, 3/2, 1/3, 3/4, The constant sequence converges to the supremum: \(x_n = 3/2 = \sup(S) \). A monotone sequence converging to the infimum is given by \(y_n = 3/(2n) \to 0 = \inf(S) \).

13.21. The Least Upper Bound Property holds for an ordered field \(F \) if and only if the Greatest Lower Bound Property holds for \(F \). Given a set \(S \), let \(-S \) denote \(\{x : -x \in S\} \). Upper bounds on \(-S \) are the negatives of lower bounds on \(S \), and lower bounds on \(-S \) are the negatives of upper bounds on \(S \). The LUB Property implies for nonempty \(S \) that \(-S \) has at least upper bound \(-\alpha \), which implies that \(S \) has a greatest lower bound \(-\alpha \), and the GLB Property follows. Conversely, the GLB Property implies for nonempty \(S \) that \(-S \) has a greatest lower bound \(-\alpha \), which implies that \(S \) has at least upper bound \(-\alpha \), and the LUB Property follows.

13.22. Determination of \(\sup(S) \) and \(\inf(S) \).

a) \(S = \{x : x^2 < 5x\} \). Rewrite \(S \) as \(S = \{x : x(x - 5) < 0\} \). Thus \(x \in S \) if and only if \(x \) and \(x - 5 \) have opposite signs. This requires \(x > 0 \) and \(x < 5 \), and that satisfies, so \(S \) is the open interval \((0, 5) \). This set is bounded by \(0 \) and \(5 \), and \(\sup(S) = 5 \) and \(\inf(S) = 0 \).

b) \(S = \{x : 2x^2 < x^3 + x\} \). Rewrite \(S \) as \(S = \{x : x(x - 1)^2 > 0\} \). The condition holds if and only if \(x > 0 \) and \(x \neq 1 \). This set is unbounded, but its infimum is \(0 \).

c) \(S = \{x : 4x^2 > x^3 + x\} \). The inequality is equivalent to \(x(4x^2 - 4x + 1) < 0 \). The zeros of the quadratic factor are at \(x = 2 \pm \sqrt{3} \). Thus \(S = (-\infty, 0) \cup (2 - \sqrt{3}, 2 + \sqrt{3}) \). The set has no lower bound, but \(\sup(S) = 2 + \sqrt{3} \).

13.23. If \(A, B \subset \mathbb{R} \) have upper bounds and \(C = \{x + y : x \in A, y \in B\} \), then \(C \) is bounded and \(\sup(C) \leq \sup(A) + \sup(B) \). Let \(\alpha = \sup(A) \) and \(\beta = \sup(B) \). We prove first that \(\alpha + \beta \) is an upper bound for \(C \). For each \(x \in C \), the definition of \(C \) implies that \(x = z + y \) for some \(z \in A \) and \(y \in B \). By the definition of upper bound, \(x \leq \alpha \) and \(y \leq \beta \). Hence \(z = x + y \leq \alpha + \beta \), and \(\alpha + \beta \) is an upper bound for \(C \).

To prove that \(\alpha + \beta \) is the least upper bound, consider \(q \) such that \(q < \alpha + \beta \). Thus \(q = \alpha + \beta - \varepsilon \) for some \(\varepsilon > 0 \). Since \(\alpha = \sup(A) \), the number \(\alpha - \varepsilon/2 \) is not an upper bound for \(A \), and there exists \(x \in A \) with \(x > \alpha - \varepsilon/2 \). Similarly, there exists \(y \in B \) with \(y > \beta - \varepsilon/2 \). This constructs \(z \in C \) such that \(z = x + y > \alpha + \beta - \varepsilon = q \). Hence \(q \) is not an upper bound for \(C \).

Alternative proof: Instead of showing directly that \(C \) has no smaller upper bound, it also suffices to show that \(C \) contains the elements of a sequence converging to \(\alpha + \beta \). This can be obtained by taking a sequence \((x) \) in \(A \) converging to \(\alpha \) and a sequence \((y) \) in \(B \) converging to \(\beta \). The sum consists of elements of \(C \) as \(x_n + y_n \to \alpha + \beta \).

Comment: Since \(\alpha + \beta \) may not lie in \(C \), one cannot prove that \(\alpha + \beta \) is the least upper bound for \(C \) without using the properties of supremum. For example, if \(A = \{x \in \mathbb{R} : 0 < x < 1\} \) and \(B = \{x \in \mathbb{R} : 2 < x < 3\} \), then \(C = \{x \in \mathbb{R} : 2 < x < 4\} \); none of these sets contains its supremum.
13.24. When \(f, g: \mathbb{R} \to \mathbb{R} \) are bounded functions such that \(f(x) \leq g(x) \) for all \(x \), with images \(F, G \) respectively, the following possibilities may occur (pictures omitted):

a) \(\sup(F) < \inf(G) \). Let \(f(x) = 0 \) and \(g(x) = 1 \) for all \(x \).

b) \(\sup(F) = \inf(G) \). Let \(f(x) = g(x) = 0 \) for all \(x \).

c) \(\sup(F) > \inf(G) \). Let \(f(x) = |x| \) for \(|x| \leq 1 \) and \(f(x) = 1 \) for \(|x| > 1 \).

Let \(g(x) = |x| \) for \(|x| \leq 2 \) and \(g(x) = 2 \) for \(|x| > 2 \). Now \(\sup(f(x)) = 1 \) and \(\inf(g(x)) = 0 \).

13.25. \(\lim \sqrt{1 + \frac{n}{n^2}} = 1 \). Given \(\varepsilon > 0 \), let \(N = \lceil 1/\varepsilon \rceil \). Note that \(\sqrt{1 + \frac{n}{n^2}} < 1 + \frac{1}{n^2} \) when \(n > 0 \). For \(n \geq N \), we have \(\sqrt{1 + \frac{n}{n^2}} - 1 < \left| 1 + \frac{1}{n^2} - 1 \right| = \frac{1}{n^2} < \varepsilon \). Thus \(\sqrt{1 + \frac{n}{n^2}} \to 1 \), by the definition of limit.

Comment: Let \(a_n = \sqrt{1 + \frac{n}{n^2}} \). A less efficient approach first uses MCT to prove that \(\langle a \rangle \) converges. Letting \(L = \lim a_n \), we have \(a_n^2 \to L^2 \). Proving \(a_n^2 \to 1 \) directly yields \(L = \pm 1 \), and positivity of \(a_n \) then yields \(L = 1 \).

13.26. If \(\lim a_n = 1 \), then \(\lim \left[(1 + a_n)^{-1} \right] = \frac{1}{2} \).

Consider \(\varepsilon > 0 \). Because \(\lim a_n = 1 \), the definition of limit tells us that there exists \(N_1 \in \mathbb{N} \) such that \(n \geq N_1 \) implies \(|a_n - 1| < \varepsilon \). Also \(|1 + a_n| = |1 + 1 + a_n| \leq 2 + |a_n - 1| < 2 + \varepsilon \). Let \(N = N_1 \). Now \(n \geq N \) implies

\[
\left| \frac{1}{1 + a_n} - \frac{1}{2} \right| = \frac{|1 - a_n|}{2(1 + a_n)} = \frac{|a_n - 1|}{2(1 + a_n)} < \frac{\varepsilon}{2(1 + a_n)} < \varepsilon.
\]

Thus \(\left(1 + a_n \right)^{-1} \to \frac{1}{2} \), by the definition of limit.

13.27. If \(a_n = \sqrt{n^2 + n} - n \), then \(\lim a_n = \frac{1}{2} \). We multiply and divide \(a_n \) by \(\sqrt{n^2 + n} + n \), simplify the result, and use Exercises 13.25–13.26. Thus

\[
a_n = \sqrt{n^2 + n} - n = \frac{(n^2 + n - n)(\sqrt{n^2 + n} + n)}{(\sqrt{n^2 + n} + n)} = \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \frac{n^2 + 1}{\sqrt{1 + 1/n} + 1} - \frac{1}{2}.
\]

13.28. If \(x_n \to 0 \) and \(|y_n| \leq 1 \) for \(n \in \mathbb{N} \), then \(\lim(x_n y_n) = 0 \). One cannot argue that \(\lim(x_n y_n) = \lim(x_n) \lim(y_n) = 0 \cdot 0 = 0 \), since \(\lim(y_n) \) need not exist.

A correct proof uses \(|y_n| \leq 1 \) to argue that \(|x_n y_n| = |x_n| |y_n| \leq |x_n| \). Given \(\varepsilon > 0 \), the convergence of \(\langle x \rangle \) yields \(N \in \mathbb{N} \) such that \(n \geq N \) implies \(|x_n| < \varepsilon \). By our first computation, \(|x_n y_n| \leq |x_n| < \varepsilon \) for such \(n \), and thus \(\lim x_n y_n = 0 \).

13.29. The limit of the sequence \(\langle x_n \rangle \) defined by \(x_n = (1 + n)/(1 + 2n) \) is \(1/2 \).

Since the denominator exceeds the numerator and both are positive, we have \(0 < x_n < 1 \) for all \(n \in \mathbb{N} \). We also compute

\[
x_{n+1} - x_n = \frac{n + 2}{2n + 3} - \frac{n + 1}{2n + 1} = \frac{(n + 1)(n + 2) - (2n + 3)(n + 1)}{(2n + 3)(2n + 1)} = \frac{-1}{(2n + 3)(2n + 1)} < 0.
\]

Since \(\langle x \rangle \) is a decreasing sequence bounded below, the Monotone Convergence Theorem implies that \(\lim_{n \to \infty} x_n \) exists.

To prove that \(\lim_{n \to \infty} x_n = 1/2 \), we compute \(x_n - 1/2 = -\frac{1}{2n + 3} - \frac{1}{2} = -\frac{1}{4(n^2 + 1)} \).

Given \(\varepsilon > 0 \), choose \(N \in \mathbb{N} \) such that \(N^2 > 4/\varepsilon \). Now \(n > N \) implies \(|x_n - 1/2| = \frac{1}{4n^2 + 1} < \varepsilon \). Since this holds for each \(\varepsilon > 0 \), we have \(x_n \to 1/2 \), by the definition of limit.

13.30. The sequence \(\langle x \rangle \) defined by \(x_n = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n} \) converges. By the Monotone Convergence Theorem, it suffices to prove that \(\langle x \rangle \) is increasing and bounded above by \(1 \). For the first statement

\[
x_{n+1} - x_n = \sum_{i=1}^{n+1} \frac{1}{n+1+i} - \sum_{i=1}^{n} \frac{1}{n+i} = \frac{1}{2(n+1)} + \frac{1}{2(n+2)} - \frac{1}{2(n+1)} = \frac{1}{2n+2} > 0.
\]

For the second statement, \(x_n = \sum_{i=1}^{n} \frac{1}{i+1} < \sum_{i=1}^{n} \frac{1}{i} = n + 1 \leq 1 \).

13.31. \(x_n = (1 + (1/n)^y \) defines a bounded monotone sequence. Let \(r_n = x_{n+1}/x_n \). We show that \(r_n > 1 \) to prove that \(\langle x \rangle \) is increasing. Writing \(x_n \) as \(\left(\frac{n+1}{n+2} \right)^y \), we have

\[
r_n = \left(\frac{n+2}{n+1} \right)^y \frac{n+2}{n+1} n+2 = \left(\frac{n^2 + 2n}{n^2 + 2n + 1} \right)^y n+1 = \left(1 - \frac{1}{(n+1)^2} \right)^y n+2 n+1.
\]

Since \((1 - a^n) \geq 1 - n a \) (Corollary 3.20) when \(a > 0 \), we have

\[
r_n \geq \left(1 - \frac{n}{(1+2)^2} \right) n+2 n+1 = \frac{n^2 + n + 2}{n^2 + 2n + 1} n+2 = \frac{n^2 + 3n^2 + 3n + 2}{n^2 + 3n^2 + 3n + 1} \geq 1.
\]

To show that \(\langle x \rangle \) is bounded, we write \(x_n = (1 + 1/n)^y = \sum_{k=0}^{n} \binom{n}{k} n^{-k} \).

Since \(\prod_{k=0}^{n} (n-k) < n^k \), we obtain \(x_n \leq \sum_{k=0}^{n} \frac{1}{k!} \). Thus it suffices to show that this sum is bounded. We have \(1/k! < 1/2^k \) for \(k \geq 4 \). Therefore,

\[
\sum_{k=0}^{n} \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} < \frac{8}{5} + \frac{8}{5} + \frac{8}{5} = \frac{56}{15}.
\]

13.32. The Nested Interval Property. A nested sequence of closed intervals, with \(I_n \) of length \(d_n \), satisfies \(I_{n+1} \subseteq I_n \) for all \(n \) and \(d_n \to 0 \). The Nested