Problem 1.
Let $y_1, y_2, y_3 : \mathbb{R} \to \mathbb{R}$ be functions which are linearly dependent on $(-\infty, \infty)$.
For each of the following statements indicate if it is true or false:

(1) There exist $i \neq j$, where $i, j \in \{1, 2, 3\}$, and a number $c \in \mathbb{R}$ such that $y_j(x) = cy_i(x)$ for all $x \in \mathbb{R}$.

(2) For every $x \in \mathbb{R}$ we have $W(y_1, y_2, y_3)(0) = 0$.

(3) We have $W(y_1, y_2, y_3)(0) = 0$.

(4) If $c_1, c_2, c_3 \in \mathbb{R}$ are such that $c_1 y_1(x) + c_2 y_2(x) + c_3 y_3(x) = 0$, then $c_1 = c_2 = c_3 = 0$.

(5) If $c_1, c_2, c_3 \in \mathbb{R}$ are such that for all $x \in \mathbb{R}$ $c_1 y_1(x) + c_2 y_2(x) + c_3 y_3(x) = 0$, then for some $i \in \{1, 2, 3\}$ $c_i \neq 0$.

(6) There exist $c_1, c_2, c_3 \in \mathbb{R}$ are such that $c_1 y_1(x) + c_2 y_2(x) + c_3 y_3(x) = 0$ and that for all $x \in \mathbb{R}$ $c_1 y_1(x) + c_2 y_2(x) + c_3 y_3(x) = 0$.

(7) The functions y_1, y_2 are linearly dependent on $(-\infty, \infty)$.

(8) The functions y_1, y_2 are linearly independent on $(-\infty, \infty)$.

(9) For any functions $y_4 : \mathbb{R} \to \mathbb{R}$ the functions y_1, y_2, y_3, y_4 are linearly dependent on $(-\infty, \infty)$.

Answers:

(1) False. For example, $y_1 = x$, $y_2 = x^2$ and $y_3 = x + x^2$ are linearly dependent on \mathbb{R} since $y_1 + y_2 - y_3 \equiv 0$. However, none of the functions $x, x^2, x + x^2$ is a scalar multiple of one of the others.

(2) False. For example, for $y_1 = y_2 = y_3 = |x|$ these functions are linearly dependent on \mathbb{R}. However, $W(y_1, y_2, y_3)(0)$ does not exist since $|x|$ is not differentiable at $x = 0$.

(3) False, for the same reason as in (2).

(4) False, since the functions y_1, y_2, y_3 are assumed to be linearly dependent on $(-\infty, \infty)$.

(5) False. For example, if we take $c_1 = c_2 = c_3 = 0$, then $c_1 y_1 + c_2 y_2 + c_3 y_3 \equiv 0$, regardless of which functions y_1, y_2, y_3 we use.

(6) True, by definition of linear dependence.

(7) False. For example, $y_1 = x$, $y_2 = x^2$ and $y_3 = x + x^2$ are linearly dependent on \mathbb{R}, but the functions $y_1 = x$, $y_2 = x^2$ are linearly independent on \mathbb{R}.

(8) False. For example, if we take $y_1 = y_2 = y_3 = x$, then y_1, y_2, y_3 are linearly dependent on \mathbb{R} and y_1, y_2 are linearly dependent on \mathbb{R}.

(9) True. Since y_1, y_2, y_3 are assumed to be linearly dependent on \mathbb{R}, there exist $c_1, c_2, c_3 \in \mathbb{R}$ such that at least one of c_1, c_2, c_3 is $\neq 0$ but $c_1 y_1 + c_2 y_2 + c_3 y_3 \equiv 0$ on \mathbb{R}. For any function y_4 we can take $c_4 = 0$ and then
\[c_1y_1 + c_2y_2 + c_3y_3 \equiv 0 \text{ on } \mathbb{R}, \text{ so that } y_1, y_2, y_3, y_4 \text{ are linearly dependent on } \mathbb{R}. \]

Problem 2.

Let \(f : \mathbb{R} \to \mathbb{R} \) be the 20-periodic function such that
\[
f(t) = \begin{cases}
-1, & \text{if } -10 < t \leq 3 \\
\frac{t50}{10}, & \text{if } 3 < t \leq 10
\end{cases}
\]
and let
\[
f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nt}{10} + b_n \sin \frac{\pi nt}{10} \right)
\]
be the General Fourier Series of \(f \).

For each of the following statements indicate if it is true or false:

1. For every \(t \in (-20, 55) \) the series
\[
\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nt}{10} + b_n \sin \frac{\pi nt}{10} \right)
\]
converges.

2. For every integer \(n \geq 1 \) we have
\[
b_n = \frac{1}{10} \int_{-97}^{97} f(t) \sin \frac{\pi nt}{10} \, dt
\]

3. For every integer \(n \geq 1 \) we have
\[
b_n = \frac{2}{10} \int_{0}^{10} f(t) \sin \frac{\pi nt}{10} \, dt
\]

4. We have
\[
-1 = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{3\pi n}{10} + b_n \sin \frac{3\pi n}{10} \right).
\]

5. We have
\[
\frac{350}{2} - 1 = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{3\pi n}{10} + b_n \sin \frac{3\pi n}{10} \right).
\]

6. We have
\[
-1 = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{42\pi n}{10} + b_n \sin \frac{42\pi n}{10} \right).
\]

7. For every \(t \in (-2, 3) \) we have
\[
0 = \sum_{n=1}^{\infty} \frac{\pi n}{10} \left(-a_n \sin \frac{\pi nt}{10} + b_n \cos \frac{\pi nt}{10} \right).
Answers:

1. True. Since the function f is piecewise-smooth, by the Convergence
 Theorem the General Fourier Series of f converges for every $t \in \mathbb{R}$, and, in
 particular, for every $t \in (-20, 55)$.

2. True. If $g(t)$ is a piecewise-continuous p-periodic function (where
 $p > 0$) then for any $a, b \in \mathbb{R}$ we have $\int_{a}^{a+p} g(t) \, dt = \int_{b}^{b+p} g(t) \, dt$. In our case
 the function $f(t) \sin \frac{\pi nt}{10}$ is 20-periodic and hence
 \[
 b_n = \frac{1}{10} \int_{-10}^{10} f(t) \sin \frac{\pi nt}{10} \, dt = \frac{1}{10} \int_{-77}^{97} f(t) \sin \frac{\pi nt}{10} \, dt
 \]
 (3) False, since the function $f(t)$ in this example is not odd.

3. False. The function $f(t)$ is discontinuous at $t = 3$, with $f(3+) = 3^{50}$
 and $f(3-) = -1$. Therefore, by the Convergence Theorem,
 \[
 \frac{3^{50} - 1}{2} = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{3\pi n}{10} + b_n \sin \frac{3\pi n}{10} \right).
 \]

4. True; see explanation for (4) above.

5. True. We have $42 = 2 + 2 \cdot 20$. Therefore, by the Convergence Theorem,
 \[
 \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{42\pi n}{10} + b_n \sin \frac{42\pi n}{10} \right) = f(42) = f(2) = -1.
 \]

Problem 3.

Consider the initial value problem
\[
(*) \quad \frac{dy}{dx} = \frac{1}{4-x} \sin(y^2 e^{xy} + 2xy - 5), \quad y(1) = 55.
\]

For each of the following statements indicate if it is true or false:

1. The problem is guaranteed to have a unique solution on the interval
 $(0, 4)$.
2. The problem is guaranteed to have a solution on the interval $(0, 4)$.
3. There exists $\epsilon > 0$ such that the problem has a solution on the
 interval $(1 - \epsilon, 1 + \epsilon)$.
4. There exists $\epsilon > 0$ such that the problem has at most one solution
 on the interval $(1 - \epsilon, 1 + \epsilon)$.
5. For some $\epsilon > 0$ the problem has a solution
 on the interval $(1 - 2\epsilon, 1 + 3\epsilon)$.

Answers

1. False. Theorem 1 on p. 24 never guarantees the existence of a solution
 on a specific interval, such as the interval $(0, 4)$.

(2) False, for the same reason as in (1).
(3) True, by Theorem 1 on p. 24.
(4) True, by Theorem 1 on p. 24.
(5) True, by Theorem 1 on p. 24.

Problem 4.

Consider the problem

\[
\begin{cases}
 y_{tt} = 25y_{xx} & \text{for } t > 0, \ 0 < x < \pi, \\
 y(0, t) = y(\pi, t) = 0, & \text{for } t > 0, \\
 y(x, 0) = x^2 - \pi x & \text{for } 0 < x < \pi, \\
 y_t(x, 0) = 0, & \text{for } 0 < x < \pi.
\end{cases}
\]

For each of the following statements indicate if it is true or false:

(1) The function

\[
y(x, t) = \frac{1}{2} \left[(x + 5t)^2 + (x + 5t) + (x - 5t)^2 + (x - 5t) \right],
\]

where \(t \geq 0, \ 0 \leq x \leq \pi \), is a solution of (**).

(2) If \(y(x, t) \) is the solution of (**), then

\[
y(1, 1) = \frac{23}{2}.
\]

(3) Problem (**) has a solution of the form

\[
y(x, t) = \sum_{n=1}^{\infty} c_n \cos(5nt) \sin(nx)
\]

for some choice of constants \(c_n \in \mathbb{R}, \ n = 1, 2, 3, \ldots \).

(4) Problem (**) has the solution

\[
y(x, t) = \sum_{n=1}^{\infty} c_n \cos(5nt) \sin(nx)
\]

where

\[
c_n = \int_0^{\pi} (x^2 - \pi x) \sin(nx) \, dx
\]

for \(n = 1, 2, 3, \ldots \).

(5) Problem (**) has the solution

\[
y(x, t) = \sum_{n=1}^{\infty} c_n \cos(5nt) \sin(nx)
\]

where

\[
c_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (x^2 - \pi x) \sin(nx) \, dx
\]

for \(n = 1, 2, 3, \ldots \).
(6) Problem (**) has the solution
\[y(x, t) = \sum_{n=1}^{\infty} c_n \cos(5nt) \sin(nx) \]
where \[c_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f_O(x) \sin(nx) \, dx \]
for \(n = 1, 2, 3, \ldots \), and where \(f_O(x) \) is the \(2\pi \)-periodic odd extension of the function \(f(x) = x^2 - \pi x, \, 0 < x < \pi \).

(7) Problem (**) has the solution
\[y(x, t) = \sum_{n=1}^{\infty} c_n \cos(5nt) \sin(nx) \]
where \[c_n = \frac{1}{\pi} \int_{10}^{10+2\pi} f_O(x) \sin(nx) \, dx \]
for \(n = 1, 2, 3, \ldots \), and where \(f_O(x) \) is the \(2\pi \)-periodic odd extension of the function \(f(x) = x^2 - \pi x, \, 0 < x < \pi \).

Answers:
(1) False. Note that for \(f(x) = x^2 - \pi x, \, 0 \leq x \leq \pi \), we have \(f(0) = f(\pi) = 0 \). Therefore the odd \(2\pi \)-periodic extension \(f_O(x) \) of \(f \) is continuous on \(\mathbb{R} \). The D’Alambert’s form of the solution of (**) is \(y = \frac{1}{2}[f_O(x+5t) + f_O(x-5t)] \). However, \(f_O(x) \) is defined by different formulas from \(x^2 - \pi x \) outside of the interval \([0, \pi] \) and it is not true that for arbitrary \(x \in \mathbb{R} \) and \(t \geq 0 \) \(\frac{1}{2}[f_O(x+5t) + f_O(x-5t)] = \frac{1}{2}[(x+5t)^2 - \pi(x+5t) + (x-5t)^2 - (x-5t)] \).

(2) False.
As explained in part (1) above, by D’Alambert’s formula, we have \(y = \frac{1}{2}[f_O(x+5t) + f_O(x-5t)] \). In particular, \(y(1, 1) = \frac{1}{2}[f_O(6) + f_O(-4)] \). Since \(f_O \) is \(2\pi \)-periodic and \(-\pi < 6 - 2\pi < 0 \), we have \(f_O(6) = f_O(6-2\pi) = -f(2\pi - 6) = -(2\pi - 6)^2 + \pi(2\pi - 6) = -2\pi^2 + 18\pi - 36 \). Also, \(0 < -4 + 2\pi < \pi \) and hence \(f_O(-4) = f_O(-4+2\pi) = f(-4+2\pi) = (2\pi - 4)^2 - \pi(2\pi - 4) = 2\pi^2 - 12\pi + 16 \). Therefore
\[y(1, 1) = \frac{1}{2}[f_O(6) + f_O(-4)] = -2\pi^2 + 3\pi - 10 \neq \frac{23}{2} \].

(3) True.

(4) False. The factor of \(\frac{2}{\pi} \) in front of the integral sign in the formula for \(c_n \) is missing.

(5) False. See item (6) below. Note that \(f_O(x) = -x^2 + \pi x \) for \(-\pi < x < 0 \).
(6) True. Since \(f_O \) is odd, we have
\[
\frac{1}{\pi} \int_{-\pi}^{\pi} f_O(x) \sin(nx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} f_O(x) \sin(nx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} (x^2-\pi x) \sin(nx) \, dx.
\]

(7) True. Since \(f_O \) is 2\(\pi \)-periodic, we have
\[
\frac{1}{\pi} \int_{-\pi}^{\pi} f_O(x) \sin(nx) \, dx = \frac{1}{\pi} \int_{10}^{10+2\pi} f_O(x) \sin(nx) \, dx.
\]

Problem 5.

Consider the equation
\[
y''' + 3y'' + 3y' + y = x^2 e^{-x} + 5xe^{-x} \cos(2x)
\]
on the interval \((-\infty, \infty)\).

For each of the following statements indicate if it is true or false:

(1) Equation (†) has a particular solution of the form
\[
y = (A + Bx + Cx^2)e^{-x} + (D + Ex)e^{-x} \cos(2x)
\]
for some constants \(A, B, C, D, E\).

(2) Equation (†) has a particular solution of the form
\[
y = x^2(A + Bx + Cx^2)e^{-x} + (D + Ex)e^{-x} \cos(2x)
\]
for some constants \(A, B, C, D, E\).

(3) Equation (†) has a particular solution of the form
\[
y = x^3(A + Bx + Cx^2)e^{-x} + (D + Ex)e^{-x} \cos(2x)
\]
for some constants \(A, B, C, D, E\).

(4) Equation (†) has a particular solution of the form
\[
y = x^3[(A + Bx + Cx^2)e^{-x} + (D + Ex)e^{-x} \cos(2x)]
\]
for some constants \(A, B, C, D, E\).

(5) Equation (†) has a particular solution of the form
\[
y = x^3(A + Bx + Cx^2)e^{-x} + (D + Ex)e^{-x} \cos(2x) + (F + Gx)e^{-x} \sin(2x)
\]
for some constants \(A, B, C, D, E, F, G\).

(6) For every \(A, B, C, D, E, F, G \in \mathbb{R}\) the function
\[
y = x^3(A + Bx + Cx^2)e^{-x} + (D + Ex)e^{-x} \cos(2x) + (F + Gx)e^{-x} \sin(2x)
\]
is a solution of equation (†).

(7) The general solution of of equation (†) is
\[
y = (c_1+c_2x+c_3x^2)e^{-x} + x^3(A+Bx+Cx^2)e^{-x} + (D+Ex)e^{-x} \cos(2x) + (F+Gx)e^{-x} \sin(2x)
\]
where \(c_1, c_2, c_3, A, B, C, D, E, F, G \in \mathbb{R}\) are arbitrary constants.
(8) There exist $A_0, B_0, C_0, D_0, E_0, F_0, G_0 \in \mathbb{R}$ such that the general solution of of equation (†) is
\[y = (c_1 + c_2 x + c_3 x^2) e^{-x} + x^2 (A_0 + B_0 x + C_0 x^2) e^{-x} + (D_0 + E_0 x) e^{-x} \cos(2x) + (F_0 + G_0 x) e^{-x} \sin(2x) \]
where $c_1, c_2, c_3 \in \mathbb{R}$ are arbitrary constants.

Answers:

(1) False. Duplication with terms from y_c is not yet eliminated, and the terms involving $e^{-x} \sin(2x)$ are missing.

(2) False, for similar reasons to (1).

(3) False. Duplication with terms from y_c is eliminated, but the terms involving $e^{-x} \sin(2x)$ are still missing.

(4) False. See (5) below for the correct form of y_p.

(5) True.

(6) False. To make the statement in (5) true we must replace the opening phrase “For every” by “For some”.

(7) False, for similar reasons to (6). The constants A, B, C, D, E, F, G are not allowed to be arbitrary.

(8) True.