1.

(a) Let A be a 3×3 invertible matrix with the columns $A = [a_1 | a_2 | a_3]$. Consider the linear system

$$A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = a_1.$$

What can we say about x_2 and x_3?

Answer:

By Cramer’s rule, we have

$$x_2 = \frac{1}{\det(A)} \det[a_1 | a_1 | a_3] = 0$$

and similarly

$$x_3 = \frac{1}{\det(A)} \det[a_1 | a_2 | a_1] = 0.$$

(b) Let $A = \begin{bmatrix} a & * & * & * \\ 0 & b & * & * \\ 0 & 0 & c & * \\ 0 & 0 & 0 & d \end{bmatrix}$ where $a, b, c, d \in \mathbb{R}$ are nonzero real numbers.

(So that $\det(A) = abcd \neq 0$ and A is invertible).

Is it true that A^{-1} is again an upper-triangular matrix? Why or why not?

Answer:

Yes, A^{-1} is an upper-triangular matrix. We can make this conclusion using the formula $A^{-1} = \frac{1}{\det(A)} \adj(A)$ for the inverse of A. In the adjugate matrix $\adj(A)$ every entry in the position ij with $i > j$ (below the diagonal) is computed as $C_{ij} = (-1)^{i+j} A_{ji}$ for the original matrix A. Computing the determinants A_{ji} for $j < i$ for A shows that they all produce 2×2 matrices with at least one row or column of 0s, so that $C_{ji} = 0$.

(c) Compute the area of the parallelogram in \mathbb{R}^2 with the sides given by the segments AB and AC where $A = (0, 2)$, $B = (-1, 3)$, $C = (4, 1)$.

Answer:

Let $\vec{v}_1 = A \vec{c} = (-1, 1)$ and $\vec{v}_2 = A \vec{c} = (4, -1)$. Form the matrix

$$M = [\vec{v}_1 | \vec{v}_2] = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}.$$

Then the area of the parallelogram in question is $|\det(M)| = |-3| = 3$.
