1. Using induction, prove that for every integer \(n \geq 2 \)

\[3^n \geq 2n^2 + 1. \]

Solution. 1) Base of Induction. First, check if the statement \(3^n \geq 2n^2 + 1 \) holds for \(n = 2 \).

We have \(3^2 = 9 \) and \(2 \cdot 2^2 + 1 = 2 \cdot 4 + 1 = 9 \). Since \(9 \geq 9 \), the required statement does hold for \(n = 2 \).

2) Inductive Step.

Let \(k \geq 2 \) and suppose that \(3^k \geq 2k^2 + 1 \) is known to hold. We need to derive that \(3^{k+1} \geq 2(k+1)^2 + 1 \), that is, \(3^{k+1} \geq 2(k^2 + 2k + 1) + 1 \), that is, \(3^{k+1} \geq 2k^2 + 4k + 3 \).

The inductive hypothesis \(3^k \geq 2k^2 + 1 \) by multiplying by 3 implies

\[3^{k+1} \geq 6k^2 + 3. \]

To show that \(3^{k+1} \geq 2k^2 + 4k + 3 \) it suffices to establish that for \(k \geq 2 \) we have \(6k^2 + 3 \geq 2k^2 + 4k + 3 \).

We have:

\[6k^2 + 3 \geq 2k^2 + 4k + 3 \]

is equivalent to:

\[4k^2 \geq 4k \]

by dividing by \(4k > 0 \), is equivalent to:

\[k \geq 1, \]

which holds since by assumption \(k \geq 2 \). Thus for \(k \geq 2 \) we have \(6k^2 + 3 \geq 2k^2 + 4k + 3 \), as required.