1 Previous Results

\(S \) - a surface
\(\mathcal{G} \) - set of closed geodesics
\(i(\gamma, \gamma) \) - geodesic length
\(i(\gamma, \gamma) \) - self-intersection number
\(\mathcal{G}'(L) = \{ \gamma \in \mathcal{G} \mid i(\gamma) \leq L \} \)

\[\#(\mathcal{G}'(L)) = \frac{e^L}{L!} \]

Theorem 1 (Margulis) Let \(S \) be a closed, negatively curved surface. Then
\[\#(\mathcal{G}'(L)) = \frac{e^L}{L!} \quad A \sim B \text{ if } \lim_{L \to \infty} \frac{A}{B} = 1 \]
where \(A \) is the topological entropy of the geodesic flow.

NB: If \(S \) is hyperbolic, then \(\delta = 1 \).

\[\mathcal{G}'(L, K) = \{ \gamma \in \mathcal{G}' \mid i(\gamma) \leq L, i(\gamma, \gamma) \leq K \} \]

Question 1 Support \(K = K(L) \) is a function of \(L \). What can be said about the asymptotic growth of \(\#(\mathcal{G}'(L, K)) \)?

Theorem 2 (Mirzakhani) Let \(S \) be a hyperbolic genus \(g \) surface with \(n \) punctures. Then
\[\#(\mathcal{G}'(L, K)) \sim c(S) L^{2g-2+n} \]
where \(c(S) \) is a constant depending only on the geometry of \(S \).

Theorem 3 (Rivin) Let \(S \) be a hyperbolic genus \(g \) surface with \(n \) punctures. Then
\[\#(\mathcal{G}'(L, K)) \sim c(S) L^{2g-2+n} \]
where \(c(S) \) is a constant depending only on the geometry of \(S \).

Question 2 For fixed \(L \) and \(K \), what are the best bounds for \(\#(\mathcal{G}'(L, K)) \)?

NB: Trivial upper and lower bounds are \(0 \leq \#(\mathcal{G}'(L, K)) \leq \#(\mathcal{G}'(L)) \).

Consequence of Athreya-Bubuï̧on-Eskin-Mirzakhani-Boaventura-Parlier-Baasmanjian + others

Proposition 1 On a hyperbolic genus \(g \) surface with \(n \) punctures,
\[\#(\mathcal{G}'(L, K)) \leq f(K) L^{2g-2+n} \]
where \(f(K) \) is the number of \(\text{Mod}_g \) orbits in \(\mathcal{G}'(L, K) \).

A \sim B \text{ if } \frac{A}{B} \leq A \leq eB \]

2 Combinatorial Model on Arbitrary Surfaces

Reduce to pairs of pants.

1 Combining Points on Pairs of Pants

Pants as union of two hexagons.

2 Get word in hexagon edges.

\(\gamma \rightarrow w(\gamma) = b_1^{a_1} \cdots b_n^{a_n} \)

\(b_i \) on \(\mathcal{G} \), \(a_i \) is a corner of \(\mathcal{P} \).

\(\bullet i(\gamma, \gamma) \leq n(\gamma) \leq \sum i(\gamma) \leq \sum i(\gamma_i) \)

2 For Pairs of Pants

\(\mathcal{P} \) - hyperbolic pair of pants with geodesic boundary

Theorem (S) On a pair of pants \(\mathcal{P} \),
\[e^{\sqrt{i(\gamma, \gamma)}} \leq \#(\mathcal{G}'(L, K)) \leq \min(\sqrt{i(\gamma, \gamma)} a, \sqrt{i(\gamma, \gamma)} b, \sqrt{i(\gamma, \gamma)} c) \]

where \(c \) depends on the geometry of \(\mathcal{P} \), and \(c \to 0 \) as the lengths of \(\partial \mathcal{P} \) go to infinity, and \(c \) is a universal constant.

Corollary (S) If \(K = K(L) \) is s.t. \(K = o(L^2) \), then
\[\#(\mathcal{G}'(L, K)) = o(\#(\mathcal{G}'(L))) \]

Theorem (Lalley) Let \(S \) be a closed hyperbolic surface. Choose \(\gamma_2 \in \mathcal{G}'(L) \) at random for each \(L \in \mathbb{N} \). Then
\[\lim_{L \to \infty} \frac{i(\gamma_1, \gamma_2)}{L^2} = \kappa \]

for almost any choice of sequence \(\gamma_2 \), where \(\kappa \) depends only on the geometry of \(S \).

Theorem 5 (Balasch) Let \(S \) be a hyperbolic surface. Then
\[i(\gamma, \gamma) \leq M(\gamma)^2 \]

for any \(\gamma \in \mathcal{G}' \), where \(M \) depends only on the geometry of \(S \).

3 For an Arbitrary Surface

Conjecture (S) On an arbitrary surface \(S \),
\[\#(\mathcal{G}'(L, K)) \leq \min(e^{L}, e^{K/2} \log \#(\mathcal{G}'(L, K))) \]

where \(\#(\mathcal{G}(L, K)) \) is a rational function in \(K \) and \(L \) and \(c \) is a constant depending only on the geometry of \(S \).

Question 2 For which families \(\mathcal{G}' \subset \mathcal{G} \) of complete geodesics with infinitely many self-intersections do the conclusions of Birman-Series hold?

\(\mathcal{G}' \) - set of complete geodesics
\(\mathcal{K} = \{ \gamma \in \mathcal{G} \mid i(\gamma, \gamma) \leq K \} \)
\(\mathcal{K}_x \) - points on some geodesic in \(\mathcal{K} \)

NB: Since most complete geodesics have infinitely many self-intersections, the geodesic in \(\mathcal{K} \) should be thought of as almost simple.

Theorem 1 (Birman-Series) Let \(S \) be a hyperbolic surface. Then \(\mathcal{K}_x \) is nowhere dense and has Hausdorff dimension 1.

1 The Original Theorem

Points on arbitrary closed geodesics. (Dense)

\(\mathcal{S}_x \) (Credit: Buser, Fanlari)

\[\begin{align*}
\mathcal{G}_x &= \{ \gamma \in \mathcal{G} \mid i(\gamma, \gamma) < \epsilon \} \\
\mathcal{F}_x \subset \mathcal{S}_x \text{ - set of points on some } \gamma \in \mathcal{G}_x \\
\mathcal{F}_x \text{ - set of points on some } \gamma \in \mathcal{G}_x \\
\mathcal{F}_x \text{ - set of points on some } \gamma \in \mathcal{G}_x \\
\end{align*} \]

Theorem 2 (S) On \(\mathcal{P} \), \(\mathcal{F}_x \) has Hausdorff dimension \(\mu(\epsilon) \) where \(\lim_{\epsilon \to 0} \mu(\epsilon) = 1 \).

In particular, \(\mathcal{F}_x \) has Hausdorff dimension 1.

But, \(\mathcal{F}_x \) is not nowhere dense. In fact, it can have positive Lebesgue measure.

Proposition 3 (S) If \(\mathcal{F}_x \) denotes the closure of \(\mathcal{F}_x \) in \(\mathcal{P} \), then
\[\mathcal{F}_x = \mathcal{F} \]

More regularity:
\[\mathcal{G}_x(\epsilon) = \{ \gamma \in \mathcal{G} \mid i(\gamma, \gamma) < \epsilon \} \]

\[\mathcal{F}_x(\epsilon) \text{ - set of points on some } \gamma \in \mathcal{G}_x(\epsilon) \]

Theorem 4 (S) There is an \(\epsilon_0 \) s.t. \(\forall \epsilon < \epsilon_0, \mathcal{F}_x(\epsilon) \) is nowhere dense for all \(\epsilon \).

3 For an Arbitrary Surface

Conjecture 1 On an arbitrary surface, the Birman-Series theorem holds when
\[i(\gamma, \gamma) = o(L^{2/3}) \]