416 HOMEWORK: D’ANGELO

1. Consider \(\mathbb{R}^4 \). Show that the set \(W_1 \) of vectors of the form \((x, -x, y, z)\) forms a subspace. Also show that the set \(W_2 \) of vectors of the form \((a, b, -a, c)\) is a subspace.
 a. Find bases for \(W_1 \) and \(W_2 \).
 b. Find bases for \(W_1 + W_2 \) and \(W_1 \cap W_2 \).
 c. Verify the formula
 \[
 \dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).
 \]

2. Let \(V \) be the vector space of functions \(f : \mathbb{R} \to \mathbb{R} \). Verify (as we did the first day of class) that \(V \) can be decomposed
 \[
 V = V_e \oplus V_o
 \]
in terms of even and odd functions. Note that you must show that the intersection of the two space is 0 alone, in order to use the \(\oplus \) notation.

3. Let \(V \) be a vector space over the field \(\mathbb{F} \). Let \(L : V \to V \) be a linear transformation. For \(\lambda \in \mathbb{F} \), let \(E_\lambda \) denote the set of vectors \(v \) for which \(Lv = \lambda v \). The subspace \(E_\lambda \) is called the eigenspace corresponding to \(\lambda \) and \(\lambda \) is called an eigenvalue of \(L \).
 a. Verify that \(E_\lambda \) is a subspace.
 b. Suppose that \(V = \mathbb{R}^2 \) and that \(L \) is given by the matrix
 \[
 \begin{pmatrix}
 -1 & 8 \\
 -4 & 11
 \end{pmatrix}
 \]
 (with respect to the usual bases). Show that 3 and 7 are eigenvalues for \(L \).
 c. Find a basis for each of the \(E_\lambda \) when \(L \) is as above.

4. Let \(a, b \) be real numbers. Consider the matrix
 \[
 \begin{pmatrix}
 a & -b \\
 b & a
 \end{pmatrix}
 \]
 Show that the set of these matrices (under the usual sum and product) forms a field. What is the additive identity \(0 \)? What is the multiplicative identity \(1 \)? Find a matrix \(J \) of this type with \(J^2 = -1 \). Determine the eigenvalues of \(J \). (They are complex rather than real.)

5. Suppose \(L : V \to V \) is linear. Consider the following two properties:
 a) \(L(Lv) = 0 \) implies \(Lv = 0 \)
 b) \(\mathcal{N}(L) \cap \mathcal{R}(L) = 0 \)
 Prove that a) holds if and only if b) holds.
 Give an example of such an \(L \) for which both \(\mathcal{N}(L) \) and \(\mathcal{R}(L) \) are positive dimensional.

6. For \(n \geq 2 \), give an example of an \(n \)-by-\(n \) matrix \(A \) such that \(A^n = 0 \) but \(A^{n-1} \neq 0 \).