lecture 21 Fukaya's A∞-category

So far, the operations in the Floer TFT are defined by counting maps of Riemann surfaces with fixed complex structure on the domain. We used parametrized moduli spaces (with variable complex structure) to probe relations between these maps.

The full Fukaya category is an A∞-category whose higher operations are defined using parametrized moduli spaces.

We continue to work over a field \mathbb{K} with $\text{char}(\mathbb{K})=2$, and we assume that the Floer TFT for (M,ω) works as described in previous lectures:

* compactness, transversality, and gluing work as advertised
* $\delta^2=0$ on Floer cochain complexes $\text{CF}(L_0,L_1)$

These can be achieved by assuming (M,ω) is an “exact convex” symplectic manifold and restricting attention to exact Lagrangians.

Recall from the discussion of A∞-categories and operads the moduli space $\mathcal{M}^{d+1} = \text{Conf}_{d+1}(\partial D)/\text{Aut}(D)$ of disks with $d+1$ boundary marked points.
Each \(r \in \mathbb{R}^{d+1} \) corresponds to a pointed boundary Riemann surface \(S_r = \hat{S}_r \setminus \Sigma_r \)

where \(\Sigma = \Sigma_0, \Sigma_1, \ldots, \Sigma_d \) are the boundary marked points.

We set \(\Sigma^- = \Sigma_0 \) \(\Sigma^+ = \Sigma_1, \ldots, \Sigma_d \).

There is a universal family \(S: S_r \subset S^{d+1} \)

\[\downarrow \quad \downarrow \pi \]

\[r \in \mathbb{R}^{d+1} \]

Choose a collection of Lagrangians \(\{L_0, L_1, \ldots, L_d\} \)

\[\tau_0 (L_{S_0}, L_{S_0,1}) = (L_0, L_d) \]

\[(L_{S_1,0}, L_{S_1,1}) = (L_{i-1}, L_i) \quad 1 \leq i \leq d \]

Next, choose Floer data \((H_i, J_i) \) for each pair \((L_0, L_1), (L_1, L_2), \ldots, (L_{d-1}, L_d) \).

Next we need strip like ends: these should be chosen for the whole family \(\pi^{d+1} \rightarrow \mathbb{R}^{d+1} \).

We call this a universal choice of strip like ends, and it is possible.

We must also choose perturbation data \((K_r, J_r) \) for the family \(\pi^{d+1} \rightarrow \mathbb{R}^{d+1} \), compatible with the given Floer data on the strip like ends.
With these choices, we may, for a collection of chords \(\{y_0, y_1, \ldots, y_d \} \), consider the \(\mathbb{R}^{d+1} \)-parametrized moduli space.

\[
M_{g, d+1} = \bigcup_{s \in \mathbb{R}^{d+1}} M_{g, \{y_i, y_j\}}(\{y_i\})
\]

We can then count 0-dimensional components mod 2 to define

\[
\mu^d: \mathcal{C}F(L_{d-1}, L_d) \otimes \cdots \otimes \mathcal{C}F(L_0, L_1) \to \mathcal{C}F(L_0, L_d)
\]

for \(d \geq 2 \):

\[
\mu^d(y_0, \ldots, y_d) = \frac{\mathcal{M}_{g, 0} \left(\{y_0, y_1, \ldots, y_d\} \right) \mathcal{Y}_{0}}{\mathcal{Y}_{0}}
\]

Note that, for \(d = 2 \), \(\mathbb{R}^{d+1} = \mathbb{R}^3 = \mathbb{P}^3 \), so \(\mu^2 \) just the TFT map for the surface.

We also define \(\mu' = \mathcal{Y} \).

Remark: the map \(\mu^d \) is not the TFT map \(\Phi_S \) where \(S \) the disk with \(d+1 \) marked boundary points. \(\Phi_S \) counts 0-dimensional moduli spaces of maps with fixed complex structure on the domain. On cohomology, \(\Phi_S \) is iterated \(\mu^2 \):

\[
\Phi_S(a_0, \ldots, a_d) = \mu^2(\ldots \mu^2(\mu^2(a_0, \mu^2(a_3, \mu^2(a_2, a_1))), \ldots).
\]
We would then like to prove the A_{∞}-equations, which mod 2 take the form

\[(\forall d \geq 1) \sum_{e,i} \mu^{d-e+1} (a_d, \ldots, \mu^e(a_{i+e}, \ldots, a_{3i}), a_i, \ldots, a_1) = 0\]

This comes by showing the left hand side counts boundary points in

\[\overline{M}_{g+d+1}(\mathcal{C} \times \mathbb{R}^2)^1\]

But there is actually an issue when a disk degenerates.

\[\begin{array}{c}
\text{Here perturbation data were chosen when defining } \mu^3 \\
\text{Here perturbation data were chosen when defining } \mu^2
\end{array}\]

Why should the limiting perturbation data for μ^3 be related to the perturbation data for μ^2? More generally

\[\mu^{d-e+1} \mu^e \text{ appears in boundary of } \overline{M}_{g+1}\]

We must impose a consistency condition that says the limiting pert. data for g_{d+1} is compatible with the pert. data for g_{e+1} (e<d). This is called a consistent choice of universal perturbation data. Its existence is Lemma 9.5 in "Fukaya Cats and Picard Lefschetz theory".