The derived category \(\mathcal{D}(R) \) is formed from the homotopy category \(\mathcal{K}(R) \) of cofunctor complexes of \(R \)-modules by "inverting quasi-isomorphisms." This is a process analogous to the localization of a ring (for instance, the field of fractions of an integral domain).

Def. Let \(S \) be a collection of morphisms in a category \(\mathcal{C} \). A localization of \(\mathcal{C} \) wrt. \(S \) is a category \(\mathcal{S}^{-1}\mathcal{C} \) and a functor \(q : \mathcal{C} \to \mathcal{S}^{-1}\mathcal{C} \) such that:
1. \(\forall s \in S, \ q(s) \) is an isomorphism in \(\mathcal{S}^{-1}\mathcal{C} \)
2. If \(F : \mathcal{C} \to \mathcal{D} \) is a functor such that \(F(s) \) is an isomorphism in \(\mathcal{D} \) for all \(s \in S \), then \(\exists F' : \mathcal{S}^{-1}\mathcal{C} \to \mathcal{D} \) such that \(F = F'q \).

Because this is a universal property, \(\mathcal{S}^{-1}\mathcal{C} \) is unique if it exists.

Def. Let \(Q = \{ f : X \to X' \mid f \text{ is quasi-isoto} \} \subset \mathcal{K}(R) \). Then the derived category of \(R \)-modules is
\[
\mathcal{D}(R) = Q^{-1}\mathcal{K}(R)
\]

Proposition. \(\mathcal{D}(R) \) exists.

Roughly, morphisms in \(\mathcal{D}(R) \) are equivalence classes of "fractions" \(fs^{-1} : X \xrightarrow{s^{-1}} X' \) where \(s \in Q \).

This creates a set-theoretic issue, since, for a given \(X \), the class of quasi-isomorphisms \(X \xleftarrow{s} X' \) may not be a set.
Nevertheless, it is possible to model the equivalence classes of fractions by sets, and this is how $D(R)$ is constructed. This is why "$D(R)$ exists" is a proposition.

Prop $D(R)$ is a triangulated category, and $q: K(R) \to D(R)$ is an exact functor (commutes with shift, takes exact triangles to exact triangles.)

See Weibel Ch. 10 for proofs.

At the end of the day, morphisms in $D(R)$ are related to something that we knew from homological algebra.

Def Given $A, B \in \text{Ch}(R)$, define the hyperext groups

$$\text{Ext}^n(A, B) := \text{Hom}_{D(R)}(A, B[n])$$

If $A, B \in \text{mod-}R$ are regarded as complexes in degree 0, $\text{Ext}^n(A, B)$ is the usual Ext group.

Note that for $A, B \in \text{mod-}R$,

$$\text{Hom}_{K(R)}(A, B[n]) = \begin{cases} \text{Hom}_{\text{mod-}R}(A, B), & n = 0 \\ 0 & , n \neq 0 \end{cases}$$

showing that $K(R)$ really differs from $D(R)$.

Recall $\text{Ext}: A, B \in \text{mod-}R$. Replace A by a projective resolution (e.g. a free resolution)

$$\ldots \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} A \to 0$$

then compute $\text{Hom}_{\text{mod-}R}(P_i, B)$, take cohomology.
\[\text{Ext}_2(\mathbb{Z}_2, \mathbb{Z}_2) : \quad \text{Free resolution } 0 \to \mathbb{Z}^2 \to \mathbb{Z} \to \mathbb{Z}_2 \to 0 \]

\[\text{Hom}(\mathbb{Z}, \mathbb{Z}_2) \leftarrow \text{Hom}(\mathbb{Z}, \mathbb{Z}_2) \]

\[\mathbb{Z}_2 \]

So \[\text{Ext}_2^0(\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2 = \text{Hom}_\mathbb{Z}(\mathbb{Z}_2, \mathbb{Z}_2) \]

\[\text{Ext}_2^1(\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2, \text{ the nonidentity element corresponds to the extension } 0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0. \]

So \[\text{Hom}_{D(\mathbb{R})}(\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2 \]

\[\text{Hom}_{D(\mathbb{R})}(\mathbb{Z}_2, \mathbb{Z}_2[1]) = \mathbb{Z}_2 \]

The nontrivial morphism \[\mathbb{Z}_2 \to \mathbb{Z}_2[1] \] is represented by the fraction \(s^{-1} \)

\[0 \to 0 \to \mathbb{Z}_2 \to 0 \]

\[s \uparrow \quad s \uparrow \quad s \text{ is a quasi isomorphism} \]

\[0 \to \mathbb{Z}^2 \to \mathbb{Z} \to 0 \]

\[f \downarrow \quad f \downarrow \]

\[0 \to \mathbb{Z}_2 \to 0 \to 0 \]