Lecture 14 Homomorphisms, Kernels.

Definition Let G and H be groups. Let \(\varphi : G \to H \) be a function. \(\varphi \) is a **homomorphism** if for all \(g_1, g_2 \in G \),

\[
\varphi(g_1 g_2) = \varphi(g_1) \varphi(g_2)
\]

An isomorphism is the same thing as a bijective homomorphism, but a homomorphism is not required to be injective or surjective, and it may be neither.

Examples 1) \(G = \mathbb{Z}, H = \mathbb{Z}, d \in \mathbb{Z} : \varphi : \mathbb{Z} \to \mathbb{Z}, \varphi(k) = kd \).

This is a homomorphism since \(\varphi(k_1 + k_2) = (k_1 + k_2)d = k_1d + k_2d = \varphi(k_1) + \varphi(k_2) \).

If \(d = \pm 1 \), \(\varphi \) is bijective, so it is an isomorphism.

If \(d = 0 \), \(\varphi(k) = 0 \) for all \(k \), so neither injective nor surjective.

If \(d \in \{ -1, 0, 1 \} \), \(\varphi \) is injective, not surjective, image = \(\langle d \rangle \).

2) \(\varphi : \mathbb{Z} \to \mathbb{Z}/_d, \varphi(k) = [k] : \)

\[
\varphi(k_1 + k_2) = [k_1 + k_2] = [k_1] + [k_2] = \varphi(k_1) + \varphi(k_2)
\]

surjective, not injective.

3) \(G = GL(n, \mathbb{R}) = \{ A \mid A \text{ is an } n \times n \text{ matrix with determinant } 1 \} \)

\(H = \mathbb{R}^* = \mathbb{R} \setminus \{ 0 \} \) with multiplication (General linear group)

\(\varphi : GL(n, \mathbb{R}) \to \mathbb{R}^* \varphi(A) = \det(A) \)

homomorphism because \(\det(AB) = \det(A) \det(B) \).

4) \(S_n = \text{Sym}(\{1, 2, \ldots, n\}) \) symmetric group. Define \(T : S_n \to GL(n, \mathbb{R}) \)

as follows: let \(\vec{e}_i \) be the standard basis vectors in \(\mathbb{R}^n \).

For \(\sigma \in S_n \), let \(T(\sigma) = [\vec{e}_{\sigma(1)}, \vec{e}_{\sigma(2)}, \ldots, \vec{e}_{\sigma(n)}] \).
E.g. $n=3$ $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ $T(\sigma) = [\vec{e}_3 \ | \ \vec{e}_1 \ | \ \vec{e}_2] = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

Thus $T(\sigma)$ is the matrix of the unique linear transformation such that $T(\sigma) \vec{e}_i = \vec{e}_{\sigma(i)}$ for all basis vectors \vec{e}_i.

T is a homomorphism: $T(\sigma \tau) \vec{e}_i = \vec{e}_{\sigma \tau(i)} = T(\sigma)T(\tau) \vec{e}_i$ so $T(\sigma \tau) = T(\sigma)T(\tau)$.

Proposition (2.4.10) If $\varphi : G \to H$ and $\psi : H \to K$ are homomorphisms, so is $\psi \circ \varphi : G \to K$.

Proof: Exercise.

Example $T : S_n \to GL(n, \mathbb{R})$ $\varepsilon : = \det \circ T : S_n \to \mathbb{R}^*$. Every matrix $T(\sigma)$ has a single 1 on the diagonal, so $\det (T(\sigma)) = \pm 1$. Thus $\varepsilon : S_n \to \{\pm 1\}$ is a homomorphism; called the **sign homomorphism**.

σ is called **even** if $\varepsilon(\sigma) = +1$.

σ is called **odd** if $\varepsilon(\sigma) = -1$.

Any transposition (2-cycle) (ij) is odd.

If σ is the product of k 2-cycles, $E(\sigma) = (-1)^k$.

Even permutations are precisely those that can be written as a composition of an even number of 2-cycles.

Proposition (2.4.11) Let $\varphi : G \to H$ be a homomorphism.

Then (1) $\varphi(e_g) = e_H$ (2) $\varphi(g^{-1}) = (\varphi(g))^{-1}$

Proof: (1) $e_H = \varphi(e_g) = \varphi(e_g e_g) = \varphi(e_g) \varphi(e_g) = e_H$ by cancellation law.

(2) $e_H = \varphi(e_g) = \varphi(gg^{-1}) = \varphi(g)(\varphi(g)^{-1})$ so $\varphi(g)^{-1} = \varphi(g^{-1})$ by Prop. 2.1.2.
Proposition (2.4.12) \(\phi: G \to H \) a homomorphism.

1. For any subgroup \(A \leq G \), \(\phi(A) \leq H \) is a subgroup.
2. For any subgroup \(B \leq H \), \(\phi^{-1}(B) = \{ g \in G \mid \phi(g) \in B \} \leq G \) is a subgroup.

Proof: See Text for (1). For (2) let \(g_1, g_2 \in \phi^{-1}(B) \). Then \(\phi(g_1), \phi(g_2) \in B \). Since \(B \) is subgroup, \(\phi(g_1) \cdot \phi(g_2) \in B \) since \(\phi \) is homomorphism, \(\phi(g_1) \phi(g_2) = \phi(g_1g_2) \), and thus is in \(B \), so \(g_1g_2 \in \phi^{-1}(B) \). So \(\phi^{-1}(B) \) is closed under mult.

Also, if \(g \in \phi^{-1}(B) \), \(\phi(g) \in B \), so \(\phi(g^{-1}) = \phi(g)^{-1} \in B \), so \(g^{-1} \in \phi^{-1}(B) \), and \(\phi^{-1}(B) \) is closed under inversions.

Special case when \(B = \{ \epsilon \} \leq H \). Then \(\phi^{-1}(B) = \phi^{-1}(\{ \epsilon \}) = \{ g \in G \mid \phi(g) = \{ \epsilon \} \} \).

This is called the kernel of \(\phi \) and denoted \(\ker(\phi) \).

Example (i) \(\phi: \mathbb{Z} \to \mathbb{Z}_n \) \(\phi(k) = [k] \), \(\ker(\phi) = \{ x \mid [x] = [0] \} \) \(= \phi_n, -\phi_n, 0, \phi_n, 2\phi_n, \ldots \phi = \langle n \rangle \).

(ii) \(\varepsilon: S_n \to \{ \pm 1 \} \). \(\ker(\varepsilon) = \) even permutations.
\(A_n := \ker(\varepsilon) \) is called the alternating group on \(n \) elements.

(iii) \(\det: GL(n, \mathbb{R}) \to \mathbb{R}^* \). \(\ker(\det) = \{ A \mid \det(A) = 1 \} \) \(SL(n, \mathbb{R}) := \ker(\det) \) is the special linear group.

The kernel of a homomorphism has a special property.

Def: A subgroup \(N \leq G \) is called normal if for all \(n \in N \) and all \(g \in G \), \(gng^{-1} \in N \).

Not every subgroup has this property!
Proposition (2.4.15) Let \(\varphi : G \to H \) be a homomorphism.

Then \(\ker(\varphi) \) is a normal subgroup of \(G \).

Proof: Suppose \(n \in \ker(\varphi) \) and \(g \in G \).

Thus \(\varphi(gng^{-1}) = \varphi(g) \varphi(n) \varphi(g^{-1}) = \varphi(g) e_H \varphi(g)^{-1} \)

\[= \varphi(g) \varphi(g)^{-1} = e_H. \]

So \(gng^{-1} \in \ker(\varphi) \) \(\Box \)

One use of the concept of kernel is that it makes it a bit easier to tell if a homomorphism is injective.

Proposition (2.4.16) Let \(\varphi : G \to H \) be a homomorphism.

Then \(\varphi \) is injective if and only if \(\ker(\varphi) = \{ e_G \} \).

Proof: Suppose \(\ker(\varphi) = \{ e_G \} \). Let \(g_1, g_2 \in G \) with \(\varphi(g_1) = \varphi(g_2) \).

Then \(e_H = \varphi(g_1) \varphi(g_2)^{-1} = \varphi(g_1) \varphi(g_2^{-1}) = \varphi(g_1 g_2^{-1}) \).

Thus \(g_1 g_2^{-1} \in \ker(\varphi) \). So \(g_1 g_2^{-1} = e_G \) and \(g_1 = g_2 \).

Since \(\varphi(g_1) = \varphi(g_2) \) implies \(g_1 = g_2 \), \(\varphi \) is injective.

Now suppose \(\varphi \) is injective. Since \(\varphi(e_G) = e_H \), if \(g \in \ker(\varphi) \)

then \(\varphi(g) = e_H = \varphi(e_G) \). By injectivity, \(g = e_G \).

So \(\ker(\varphi) = \{ e_G \} \). \(\Box \)