Manifold Refreshment.

Recall \(M \) a smooth manifold.

- Tangent bundle \(TM \) sections are vector fields \(\mathcal{X}(M) \)
- Cotangent bundle \(T^*M \) sections are 1-forms \(\mathcal{A}^1(M) \)
- Wedge powers \(\Lambda^k T^*M \) sections are \(k \)-forms \(\mathcal{A}^k(M) \)

We always work with \(C^\infty \) objects.

Given a vector field \(X \) on \(M \), there is an associated ordinary differential equation

unknown: path \(\gamma(t) : \mathbb{R} \rightarrow M \) equals \(\frac{d\gamma}{dt} = X(\gamma(t)) \) (*)

ODE theory \(\Rightarrow \) given any initial point \(\gamma(0) = p \), we have existence and uniqueness for short time \(E(p) \)

\[\exists! \gamma : [0, E(p)] \rightarrow M \text{ satisfies } \gamma(t) = p \text{ (*)} \]

If solution curves exist for all points for all times, \(X \) is called a complete vector field. In this case, we get an isotopy \(\phi_t : M \rightarrow M \), called the flow of \(X \)

\[\phi_t(x) = \left(\text{take } \gamma(t), \text{ where } \gamma \text{ is the solution curve} \right) \]

\[\text{ (with initial point } \gamma(0) = x \text{) } \]

\(\bullet \) If \(M \) is compact, any vector field is complete.

\(\bullet \) All of the above also holds if the vector field \(X \) has an explicit time dependence \(X_t \). Then the ODE is

\[\frac{d\gamma}{dt} = X_t(\gamma(t)) \]

The flow is still denoted \(\phi_t \).
Exterior derivative: This is a first order differential operator
\[d: \Omega^k(M) \to \Omega^{k+1}(M) \]

It is determined by the following properties (which are typically most useful for computation as well):

- \(d \) is natural with respect to smooth maps \(f: M \to N \): consider pull back \(f^*: \Omega^k(N) \to \Omega^k(M) \)
 then \(d(f^* \alpha) = f^*(d\alpha) \)
- \(d^2: \Omega^k(M) \to \Omega^{k+1}(M) \to \Omega^{k+2}(M) \) is zero
- If \(f \in \Omega^0(M) \) is a function, \(df \) is the differential of \(f \):
 \[df(X) = X \cdot f \] for any vector field \(X \)
- If \(\alpha \in \Omega^k(M) \), \(\beta \in \Omega^0(M) \),
 \[d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta \]

In an arbitrary local coordinate system \((x_i)_{i=1}^n \) on \(M \) where \(I \subseteq \{1, \ldots, n\} \) is a subset of size \(k \), we have a \(k \)-form

\[dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_k}, \quad i_1 < i_2 < \cdots < i_k \]

Any \(k \)-form has local expression \(\alpha = \sum_{|I|=k} f_I \, dx_I \)

Then \(d\alpha = \sum_{|I|=k} df_I \wedge dx_I \), where \(df_I = \sum_{i=1}^n \frac{\partial f_I}{\partial x_i} \, dx_i \)

Integral: Given a sufficiently smooth \(k \)-chain \(C \) in \(M \) (e.g., an oriented smooth submanifold of \(M \)), there is a well defined integral on \(k \)-forms

\[\int_C \alpha \quad \text{for} \quad \alpha \in \Omega^k(M) \]
We have Stokes' theorem: \[\int_C d\alpha = \int_{\partial C} \alpha \]
where \(\partial C\) denotes the boundary of the chain \(C\).

Contraction: Let \(X\) be a vector field, \(\alpha\) a \(k\)-form. There is a \((k-1)\)-form \(i_X \alpha\) called the contraction of \(X\) with \(\alpha\). Think of \(\alpha\) as an alternating \(k\)-multilinear form on the tangent spaces, and plug \(X\) into first input.

Derivation property: \[i_X (\alpha \wedge \beta) = (i_X \alpha) \wedge \beta + (-1)^k \alpha \wedge (i_X \beta) \]
if \(\alpha \in \Omega^k(M)\) and \(\beta \in \Omega^1(M)\).

Homework: prove this.

Lie derivative: Recall flow \(\varphi_t\) of vector field \(X\) (time independent)

Then we can define \[L_X \alpha = \frac{d}{dt} (\varphi_t^* \alpha) \bigg|_{t=0} \]

\[L_X : \Omega^k(M) \to \Omega^k(M) \]
This is an intrinsic notion of derivative that is not dependent on \(X\).

Cayley's Magic Formula (or Cayley homotopy formula)

\[L_X \alpha = d i_X \alpha + i_X d \alpha \quad \text{for } \alpha \in \Omega^k(M) \]

Derivative at other times: \[\frac{d}{dt} \varphi_t^* \alpha = \varphi_t^* L_X \alpha \]

If the vector field is time dependent \(X_t\), and \(\varphi_t\) is the flow, we also have \[\frac{d}{dt} \varphi_t^* \alpha = \varphi_t^* L_X \alpha \]

In \(L_{X_t} \alpha\), the vector field is first evaluated at time \(t\).
If the k-form also has an explicit time dependence

$$\frac{d}{dt} f^*_t \alpha_t = f^*_t (\mathcal{L}_{X_t} \alpha_t + \frac{d\alpha_t}{dt})$$

Symplectic manifolds A two form $\omega \in \Omega^2(M)$ is called symplectic if it is nondegenerate (defines a linear symplectic form on each tangent space) and satisfies $d\omega = 0$ (ω is closed).

By nondegeneracy, all the linear algebra carries over at the level of tangent spaces; can define isotropic, coisotropic, Lagrangian, symplectic submanifolds as those which satisfy the corresponding condition on tangent spaces.

Also we have a Lagrangian grassmannian bundle $U(\omega) / O(n) \rightarrow \Lambda \rightarrow M$

* The closedness condition $d\omega = 0$ is what really holds the geometry together, however, as we shall see.
 (Vaguely: It makes sympletic geometry “locally constant”)

Symplectic isotopy: f_t isotopy generated by X_t vector field

When is f_t symplectic (for all t)?

$$0 = \frac{d}{dt} f^*_t \omega = f^*_t (\mathcal{L}_{X_t} \omega) = f^*_t (d i_{X_t} \omega + i_{X_t} d\omega) = f^*_t (d i_{X_t} \omega) \quad \text{(since } d\omega = 0)$$

$\iff i_{X_t} \omega$ is closed for all t.

We call such X_t a **symplectic vector field**.
If \(i_{X_t} \omega \) is not merely closed, but exact, \(X_t \) is called a Hamiltonian vector field.

Hamiltonian vector field: \(f \in C^0(M) \) function, \(df \in \Omega^1(M) \)

define vector field \(X_f \) by

\[
\omega(\cdot, X_f) = -i_{X_f} \omega = df \quad \text{ (uses nondegeneracy)}
\]

\(f_t \) time-dependent family of functions: \(\omega(\cdot, X_{f_t}) = df_t \)

Poisson bracket: \(\{f, g\} = \omega(X_f, X_g) \quad (f, g \in C^0(M)) \)

\[
\begin{align*}
\omega(X_f, X_g) &= dg(X_f) = X_f \cdot g \\
&= -\omega(X_g, X_f) = -df(X_g) = -X_g \cdot f
\end{align*}
\]

Lemma: If \(X, Y \) are symplectic\(\Rightarrow \) then \(i_{[X,Y]} \omega = d(\omega(Y,X)) \)

since \(\omega \) is closed

\[
\begin{align*}
0 &= \omega(X, Y, Z) = X \cdot \omega(Y, Z) + Y \omega(Z, X) + Z \cdot \omega(X, Y) \\
&= \omega([X,Y], Z) + \omega([Y,Z], X) - \omega([Z,X], Y)
\end{align*}
\]

since \(i_X \omega \) is closed

\[
\begin{align*}
0 &= d(i_X \omega)(Y, Z) = Y \cdot i_X \omega(Z) - Z \cdot i_X \omega(Y) - i_X \omega([Y,Z]) \\
0 &= Y \cdot \omega(X, Z) - Z \cdot \omega(X,Y) - \omega(X, [Y,Z]) \\
0 &= Y \cdot \omega(Z, X) + Z \cdot \omega(X, Y) - \omega([Y,Z], X)
\end{align*}
\]

since \(i_Y \omega \) closed

\[
\begin{align*}
0 &= X \cdot \omega(Z, Y) + Z \cdot \omega(Y, X) - \omega([X,Z], Y) \\
0 &= X \cdot \omega(Y, Z) + Z \cdot \omega(X, Y) - \omega([Z,X], Y)
\end{align*}
\]
Combine: \[\omega = -z \cdot \omega(x,y) - \omega([x,y], z) \]
\[\omega([x,y], z) = z \cdot \omega(y, x) \]

Cor: \(X \cdot x, y \text{ are symplectic } \Leftrightarrow \) \([x,y] \text{ is hamiltonian } \Rightarrow \)

Prop: \[[X_f, X_g] = \{f, g\} \]

Proof: \[-i[X_f, X_g] \omega = d \left(\omega(X_f, X_g) \right) = d \{ f, g \} \]

Prop: Poisson bracket satisfies \(\{ f, gh \} = \{ f, g \} h + g \{ f, h \} \)
and \(\{ f, \{ f_2, f_3 \} \} + \{ f_2, \{ f_3, f \} \} + \{ f_3, \{ f, f_2 \} \} = 0 \)
(Jacobi identity)

Proof: \[\{ f, gh \} = X_f(gh) = X_f(g) h + g X_f(h) \]
\[= \{ f, g \} h + g \{ f, h \} \]

Jacobi: \[0 = d \omega(\{ X_1, X_2, X_3 \}) \]
\[= X_1 \omega(X_2, X_3) + X_2 \omega(X_3, X_1) + X_3 \omega(X_1, X_2) \]
\[- \omega([X_1, X_2], X_3) - \omega([X_2, X_3], X_1) - \omega([X_3, X_1], X_2) \]
\[= X_1 \{ f_2, f_3 \} + X_2 \{ f_3, f_1 \} + X_3 \{ f_1, f_2 \} \]
\[- \omega(X_1 f_2, f_3) - \omega(X_2 f_3, f_1) - \omega(X_3 f_1, f_2) \]
\[= \{ f_1 \{ f_2, f_3 \} \} + \{ f_2 \{ f_3, f_1 \} \} + \{ f_3 \{ f_1, f_2 \} \} \]
\[- \{ f_2 \{ f_2, f_3 \} f_1 \} - \{ f_3 \{ f_3, f_1 \} f_2 \} - \{ f_1 \{ f_1, f_2 \} f_3 \} \]
\[= 2 \cdot (\text{Jacobi expression}) \]

Point: \(dw = 0 \Rightarrow \text{Jacobi identity} \).
Conservation of energy: If X_M is vector field of H, then $X_M \cdot H = 0$, i.e., H is constant along trajectories of X_M.

Proof: $X_M \cdot H = \omega(X_M, X_M) = 0$ by skew symmetry.

Now we justify why the symplectic geometry is "locally constant" in some senses.

Moser theorem: Let M be compact, and let ω_t be a family of symplectic forms such that $\frac{d\omega_t}{dt}$ is exact for all t.

Then there exists an isotopy $f_t : M \to M$ such that $f_t^* \omega_t = \omega_0$ for all t.

Investigate using Lie-Cartan calculus:

Want: for vector field X_t generating f_t:

$$0 = \frac{d}{dt} f_t^* \omega_t = f_t^* (\mathcal{L}_{X_t} \omega_t + \frac{d\omega_t}{dt})$$

$$0 = \mathcal{L}_{X_t} \omega_t + \frac{d\omega_t}{dt}$$

$$0 = d i_{X_t} \omega_t + i_{X_t} dw + \frac{d\omega_t}{dt} \quad \text{by Cartan Magic}$$

$$0 = d i_{X_t} \omega_t + \frac{d\omega_t}{dt} \quad \text{since } dw = 0$$

Now since $\frac{d\omega_t}{dt}$ is exact, we can choose β_t such that $\frac{d\omega_t}{dt} = d\beta_t$.

(That β_t may be chosen to depend smoothly in t, may be deduced from Hodge theory, for example.)
\[o = d i_{X_t} \omega + d\beta_t. \] It suffices to solve
\[0 = i_{X_t} \omega + \beta_t \tag{Moser's equation} \]

This equation is uniquely solvable for \(X_t \) since \(\omega \) is nondegenerate. This completes the proof.

Moser's theorem states that a 1-parameter family of symplectic manifolds with constant cohomology class of symplectic forms is trivial.

Theorem (Darboux–Weinstein) Let \(N \subset M \) be a submanifold and let \(\omega_0 \) and \(\omega_1 \) be symplectic forms on a tubular neighborhood of \(N \) such that \(\omega_0|_N = \omega_1|_N \). Then there exists a smaller tubular neighborhood \(U_0 \) and \(U_1 \) and a diffeomorphism \(\phi : U_0 \rightarrow U_1 \) such that \(\phi|_N = id_N \) and \(\phi^*\omega_1 = \omega_0 \).

Proof \(\omega_1 - \omega_0 \) is a form which vanishes when restricted to \(N \). By the “relative Poincaré lemma” on a tubular neighborhood of \(N \), there is a 1-form \(\beta \) on a tubular neighborhood such that \(d\beta = \omega_1 - \omega_0 \) and \(\beta|_N = 0 \).

Consider the family of forms \(\omega_t = \omega_0 + t d\beta \). There is a possibly smaller tubular neighborhood of \(N \) such that all these forms are symplectic there. In such a neighborhood, we solve the Moser equation
\[i_{X_t} \omega_t + \beta = 0 \]

Then the flow of \(X_t \) will satisfy \(g_t^*\omega_t = \omega_0 \).
Note that \(X_t \) vanishes on \(N \) since \(p \) does, so \(g_t \) is identity on \(N \).

Cor (Darboux Theorem) Let \(p \in M \) be a point, then there exists a neighborhood \(U \) of \(p \) and a neighborhood \(V \) of \(0 \in \mathbb{R}^n \) and a diffeomorphism \(\phi : V \to U \) such that \(\phi^*\omega_M = \omega_{std} \).

Proof. Use linearization firm to construct \(\phi : V \to U \)
\((D\phi_p)^*\omega_M, p = \omega_{std,0}\) holds at the level of the tangent space to \(p \). Then apply Darboux-Weinstein.

Another perspective on the Moser theorem:
What is a family of symplectic manifolds parametrized by a base \(B \)? (Assume all manifolds are diffeomorphic to a fixed compact manifold \(M \)).

One answer: As above, we could have a continuous/smooth map \(B \to \{\text{Symplectic forms on } M\} \).
Such families are slightly "wild".

Another "tamer" answer: A family of symplectic structures on \(M \) parametrized by \(B \) consists of
(a) a fibration \(M \to B \)
 (Assume it's differentiably locally trivial)
(b) a two-form \(\omega \in \Omega^2(M) \) such that
 (i) \(d\omega = 0 \) on \(M \)
 (ii) \(\forall b \in B \omega_b = \omega_{\pi^{-1}(b)} \) is a symplectic form on \(M_b = \pi^{-1}(b) \).
Theorem Consider the case $B = I = [0,1]$ Any family of symplectic structures (in the "tame" sense) over I is trivial. The trivialization is constructed canonically from Σ.

Proof Let (M, ω) be such a family.

Let $t \in I = [0,1]$ be a coordinate, and let $\pi^{-1}(t) = \frac{\partial}{\partial t}$ be the standard vector field on I.

Claim There is a unique vector field $\tilde{\chi}$ on M such that

(a) $i_{\tilde{\chi}} \omega = 0$

(b) $D\pi(p)(\tilde{\chi}) = X_{\pi(p)} \quad \forall p \in M$

Proof of claim: Linear algebra. ω is a 2-form on a $(2n+1)$-dimensional space. Since $\omega \mid \pi^{-1}(t)$ is always non-degenerate, rank $\omega = 2n$.

Since the rank is even, rank $\omega = 2n$, and so ω has a one-dimensional null space at each point. Thus there is a one-dimensional space of $\tilde{\chi}$ such that $i_{\tilde{\chi}} \omega = 0$.

Such $\tilde{\chi}$ cannot be tangent to the fiber, since ω is non-degenerate on the fiber. Thus $i_{\tilde{\chi}} \omega = 0$ \Rightarrow $D\pi(\tilde{\chi}) = 0$.

Since target is 1-dim, $D\pi(\tilde{\chi}) = \alpha X$ for some $\alpha \neq 0$.

Rescale $\tilde{\chi}$ if necessary to achieve property (b).

End proof of claim.

Now let s_ϵ be the flow of $\tilde{\chi}$ on M. Because $D\pi(\tilde{\chi}) = X$

s_ϵ covers $\sigma_\epsilon := (\text{flow of } X \text{ on } I)$

$M \xrightarrow{s_\epsilon} M$

$\pi \downarrow \downarrow \pi$

$I \xrightarrow{\sigma_\epsilon} I$

Hence, s_ϵ maps $M_t = \pi^{-1}(t)$ to $M_{t+s} = \pi^{-1}(t+s)$

(take obvious precautions about flow running off ends of interval)
(Note: If fibers are not compact or have boundary, more care is needed.)

Now note that f_\ast preserves Ω!

\[L^*_\chi \Omega = d i^*_\chi \Omega + i^*_\chi d \Omega = d i^*_\chi \Omega = 0 \]

So $f_\ast \Omega = \Omega$

\[M_0 = \pi^{-1}(0) \xrightarrow{i_0} M \quad \qquad i_0^* f_\ast \Omega = i_0^* \Omega = \omega_0 \text{ on } M_0 \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[M_s = \pi^{-1}(s) \xrightarrow{i_s} M \quad (f_s|_{M_0})^* i_s^* \Omega = (f_s|_{M_0})^* \omega_s \]

\[\Rightarrow \quad \omega_s = (f_s|_{M_0})^* \omega_s \]

Conclude $f_s|_{M_0}: (M_0, \omega_0) \to (M_s, \omega_s)$ is a symplectic diffeomorphism for all $s \in [0, 1]$.

Comparison with first proof:

Given: ω_t family such that $\frac{d \omega_t}{dt}$ is exact.

What we need is to say that we can convert these data into a symplectic fibration (i.e., family in the “famly” sense).

Indeed, define a two-form ω on $M \times I$. Naively:

For $(p, t) \in M \times I$:

\[T_{(p, t)}(M \times I) = T_p M \times \mathbb{R} \]

let $\omega_{p, t}$ on $T_p M \times \mathbb{R}$ be $(\omega_t)_p$ on $T_p M$ and zero on \mathbb{R} factor.

Clearly ω restricted to $M \times \{t\}$ is ω_t.
Then \(\omega \) is not closed!

\[
\text{ext. d}r. \text{ on } M \times I \quad \text{ext. d}r. \text{ on } M
\]

3-form \(\omega \) on \(M \times I \)

Correcting term: as before, solve \(d_M \beta_t = \frac{d\omega_t}{dt} \) on \(M \)

\(\beta_t \) yields a 1-form \(\beta \) on \(M \times I \).

Define \(\sigma = \omega + dt \wedge \beta \)

\[
d\sigma = d\omega + d(dt \wedge \beta) = dt \wedge \frac{d\omega_t}{dt} - dt \wedge d\beta
\]

\[
(\text{Now } d\beta = d_M \beta_t + dt \wedge \frac{d\beta_t}{dt} = \frac{d\omega_t}{dt} + \omega_t \wedge \frac{d\beta_t}{dt})
\]

\[
d\sigma = dt \wedge \frac{d\omega_t}{dt} - dt \wedge \frac{d\omega_t}{dt} - dt \wedge dt \wedge \frac{d\beta_t}{dt} = 0
\]

Lastly, \(\sigma \) restricted to \(M \times \{ t \} \) is \(\omega_t \), since \(dt \wedge \beta \) restricts trivially