Invariance of Floer homology in the exact case
Application to cotangent bundles.

For this lecture we assume that \((M, \omega)\) is exact
and we fix a choice of 1-form \(\Theta\) such that \(\omega = d\Theta\).

With respect to the choice of \(\Theta\), a Lagrangian \(L\) is exact if
\(\Theta|_L = df_L\) for some function \(f_L: L \rightarrow \mathbb{R}\).

The exactness assumptions imply the asphericity conditions
\(\langle \omega, \pi_2(M) \rangle = 0\)
\(\langle \omega, \pi_2(M, L) \rangle = 0\)
So the arguments from the last lecture show that \(\partial \circ \partial = 0\)
on the Floer complex \(CF(L_0, L_1)\) if \(L_0\) and \(L_1\) are exact.

The main example for today: \(M = T^*Q\)
\(\Theta = \sum -p_i dq_i\)
\(\omega = \sum dq_i \wedge dp_i\)
\(L_0 = Q (0\text{-section})\)
\(L_1 = \phi_H^1(Q), \text{where}\)
\(\phi_H^1\) is the time-1 flow of a Hamiltonian \(H: M \rightarrow \mathbb{R}\).

Then (Floer) \(HF(Q, \phi_H^1(Q)) \simeq H^*(Q; \mathbb{Z}_2)\)

The proof relies on
(1) Invariance of HF with respect to change in complex structure
(2) Invariance of HF with respect to change of \(H\).
(3) Computation of \(HF(Q, \phi_H^1(Q))\) for particular convenient choices of \(J\) and \(H\).
To prove invariance: Continuation maps and homotopy operators.

Assume J_0 and J_1 are two almost complex structures for which the Floer complex $CF(0, l_1)$ can be defined. Call the corresponding Floer boundary operators $\mathcal{D}(J_0)$ and $\mathcal{D}(J_1)$.

We want to show $(CF(0, l_1), \mathcal{D}(J_0))$ is chain homotopy equivalent to $(CF(0, l_1), \mathcal{D}(J_1))$.

We define a chain map by looking at strips with J depending on the point in the domain.

\[
\begin{array}{c}
\text{use } J_0 \\
\text{here}
\end{array}
\begin{array}{c}
\text{interpolate } J_0 \rightarrow J_1
\end{array}
\begin{array}{c}
\text{use } J_1 \\
\text{here}
\end{array}
\Rightarrow M
\]

use front space of compatible J is connected.

Define continuation map $\chi_{0,1}: (CF(0, l_1), \mathcal{D}(J_0)) \rightarrow (CF(0, l_1), \mathcal{D}(J_1))$ by counting 0-dimensional components of the moduli space

\[
\chi_{0,1}(x) = \sum \# \text{moduli space}
\]

Note that, unlike \mathcal{D}, there is no IR-symmetry, so we can expect to get 0-dimensional components.
Why is $\mathcal{X}_{0,1}$ a chain map?

Consider 1-dimensional components of $\overline{\mathcal{M}}\{T_{s} \mid s \in \mathbb{R}\}$

The boundary is

\[\partial(J_0) \sim \mathcal{X}_{0,1} \]

\[+ \mathcal{X}_{0,1} \sim \partial(J_1) \]

So $\partial(J_1) \circ \mathcal{X}_{0,1} + \mathcal{X}_{0,1} \circ \partial(J_0) = 0$

Swapping roles of J_0 and J_1, we get a continuation map $\mathcal{X}_{1,0} : (CF(L_{0,1}), \partial(J_1)) \to (CF(L_{0,1}), \partial(J_0))$

We want to show $\mathcal{X}_{0,1} \circ \mathcal{X}_{1,0}$ and $\mathcal{X}_{1,0} \circ \mathcal{X}_{0,1}$ are homotopic to identity maps. This means finding a map $\mathcal{P} \in (CF(L_{0,1}), \partial(J_0))$ such that

\[\partial(J_0) \circ \mathcal{P} + \mathcal{P} \circ \partial(J_0) = \text{Id} - \mathcal{X}_{1,0} \circ \mathcal{X}_{0,1} \]

For this we consider a 1-parameter family of 1-parameter families of $\{T_{s} \mid s \in \mathbb{R}\}$.

Let $R \in [0, \infty)$ be the new parameter.

At $R=0$ $\mathcal{J} \equiv \mathcal{J}_0$

\[\text{constantly} \]

\mathcal{J}_0
As \(R \rightarrow 1 \) the constant path \(J_0 \) is defined to a path that interpolates from \(J_0 \) to \(J_1 \) via the same \(\{ J_s \} \) used to define \(X_{0,1} \), then back to \(J_0 \) via the path used to define \(X_{1,0} \).

\[
\begin{array}{cccccc}
J_0 & J_5 & J_1 & J_5 & J_0 \\
\downarrow & & & & \\
1 & \leq R & \leq 1
\end{array}
\]

Then as \(R \rightarrow \infty \), the region where \(T = J_1 \) increases in length with \(R \) bounded.

This defines a 1 parameter family of strip changing problems parameterized by \(R \in [0, \infty) \).

Define \(P \) by counting 0-dimensional components of the parametrized moduli space. This means we count "exceptional" strips: those that a rigid even with repeat to the variation of the \(R \)-parameter.

In the graded situation, where \(\mathcal{T} \) has degree \(-1\), \(P \) will have degree \(+1\).

Now to prove the homotopy formula

\[
2P + PD = \text{Id} - X_{1,0} \circ X_{0,1}
\]

we use the Gromov-Compactification of the 1-dimensional components of the \(R \)-parametric moduli space.

The Gromov boundary consists of

- \(R = 0 \) end
- \(R = \infty \) end
- Floer differential strip breaking
The \(R=0 \) end counts
strips with constant \(J = J_0 \), like the differential.
But since we are looking at index 0 strips, they
must be constant. Thus the \(R=0 \) end contributes
the identity map \(\text{Id} \).

At the \(R=\infty \) and, we have compactified by adding
a stratum corresponding to pairs of strips

\[
J_0 \quad | \quad J_3 \quad | \quad J_1 \quad \rightarrow \quad \cdots \quad | \quad J_1 \quad | \quad J_3 \quad | \quad J_0
\]

This is precisely the moduli space defined
\(\mathcal{X}_{J_0 \circ J_0} \).

Floor differential breaking will result in boundaries
consisting of a floor differential (constant \(J \))
joined to an exceptional strip in the \(R \)-family.

\[
\begin{aligned}
\frac{J_{0}}{\text{Contributes to } \mathcal{X}(J_0)} & \quad \left\{ \begin{array}{c}
J_{0} \quad | \quad J_{3} \quad | \quad J_{1} \quad \mid_{R=1} \quad \cdots \\
\text{For some particular value of } R
\end{array} \right. \\
\frac{J_{0}}{\text{Contributes to } \mathcal{X}(J_0)} & \quad \left\{ \begin{array}{c}
P \quad \mid_{R=1} \quad \cdots \\
\end{array} \right.
\end{aligned}
\]

\[
\begin{aligned}
\frac{J_{0} \quad | \quad J_{3} \quad | \quad J_{1} \quad \mid_{R=1} \quad \cdots}{P} & \quad \left\{ \begin{array}{c}
\mathcal{X}(J_0) \cdot P
\end{array} \right.
\end{aligned}
\]
Counting the boundary points modulo 2, we obtain

\[\text{Id} + \chi_{1,0} \circ \chi_{0,1} + \chi(J_0) \circ \rho + \rho_0 \chi(J_0) = 0 \quad \text{as desired} \]

Swapping the roles of \(J_0 \) and \(J_1 \), we get a homotopy between \(\text{Id} \) and \(\chi_{0,1} \circ \chi_{1,0} \).

Thus both \(\chi_{0,1} \) and \(\chi_{1,0} \) are chain homotopy equivalences.

We can use a similar continuation map argument to show that \(HF(L_0, L_1) \) is invariant under Hamiltonian deformation of \(L_0 \) or \(L_1 \). Let \(\phi \) be the Hamiltonian diffeomorphism generated by a time-dependent Hamiltonian \(H_t \). We assume that \(L_0 \cap \phi_1 L_1 \) and \(L_0 \cap \phi(t) L_1 \).

Then \(\phi = \phi_1 \), where \(\{ \phi_t \}_{t \in [0, 1]} \) is the isotopy generated by the time-dependent vector field \(X_t \)

\[X_t : c(-, X_t) = d H_t \]

The sort of "continuation strips" we look at now have a fixed almost complex structure \(J \), but a moving Lagrangian boundary condition along the edge corresponding to \(L_1 \)

\[
\begin{array}{ccc}
L_1 & \phi_t(L_1) & \phi(L_1) \\
\hline
\vdots & \vdots & \vdots \\
L_0 & \chi_0 : (CF(L_0, L_1), \partial(J)) \rightarrow (CF(L_0, \phi(L_1), \partial(J))
\end{array}
\]
There is similarly $\phi_{\gamma^1} : CF(L_0, \phi(L_1)) \to CF(L_0, L_1)$

Similar arguments as before show that ϕ_L & ϕ_{γ^1} are chain maps that are mutually homotopy-inverse homotopy equivalences.

Now we want to compute the "self-Floer homology"

$HF(L,L)$ for $L \subset \mathbb{R}^4$

Since L and \mathbb{R}^4 are not transverse, this symbol has no meaning so far. But we can define it to be

$HF(L, \phi(L))$

where $\phi(L)$ is a transverse Hamiltonian push-off of L, and the group is defined using any regular J. This is meaningful because we now know that the result is independent of these choices.

Moreover, since we can take any J and ϕ we want (as long as they satisfy the regularity conditions) the game is now to find a particularly clever choice that allows us to compute.

Here we follow Floer, "Witten's complex and co-dimension Morse theory."

To start choose a metric g on L and a Morse function $f : L \to \mathbb{R}$

We assume (g, f) is Morse-Smale, so the Morse complex is defined. $C^\infty(L, f) \triangleright D(g, f)$
On T^*L, these same data (g, f) give us a hamiltonian pushoff of L, and an almost complex structure as follows:

The metric g on L induces a metric \tilde{g} on T^*L such that the splitting $T(T^*L) = T^\text{vert}(T^*L) \oplus T^\text{horiz}(T^*L)$ is g-orthogonal, where $T^\text{horiz}(T^*L)$ is defined by the Levi-Civita connection of g and

$$T^\text{vert}_x(T^*L) = T^*_x L$$ and $T^\text{horiz}_x(T^*L) = T^*_x L$

have metrics induced by g.

Let $H = f \circ \pi$ (time-independent), ϕ_t its flow. Then $\phi_t(L) = \text{graph of } f$.

Let 0

Define $J_t = (\phi_t^*)_* J (\phi_t^*)^*$

We consider $CFL, \phi_t(L) \in \mathcal{E}(\{J_t\}_{t \in [0,1]})$

- Generators \leftrightarrow critical points of f

There is a relationship between gradient flux lines for the more small pair (g, f) on L and J_t-strips in this Floer complex.

$$\begin{align*}
\gamma : R &\rightarrow L \\
u (s, t) &= \phi_t(\gamma(s))
\end{align*}$$

$$\begin{align*}
\frac{d}{ds} \gamma(s) + (\text{grad}_g f)(\gamma(s)) &= 0 \\
\frac{\partial u}{\partial s} + J_t \frac{\partial u}{\partial t} &= 0.
\end{align*}$$
Floor shows that if f is C^2-small, this is a bijection between thin lines and strips.

Thus \((\mathcal{CF}(L, \phi, (L)), \mathcal{O}(\{F\})) \rightleftharpoons (C_*(\omega^{\text{morse}}(L, g), \mathcal{O}(g, f)))\)
are isomorphic chain complexes.

Thus \(\text{HF}(L, \phi, (L)) \rightleftharpoons H_*(\omega^{\text{morse}}(L)) \rightleftharpoons H_{\#}(L)\)