Lagrange Multipliers: Constrained Optimization

Problem: Maximize (or minimize) \(f(x, y, z) \)
subject to constraint \(g(x, y, z) = C \)
\((C = \text{constant}) \)

\[P = 6 L^\alpha K^{1-\alpha} \quad \text{Cobb-Douglas production function} \]
\[0 < \alpha < 1 \]

\(L = \text{labour} \)
\(K = \text{capital} \)
\(P = \text{production} \)
\(C = \text{cost} \)
\(C = mL + nK \)

Problem: Maximize \(P \) for a fixed cost \(C \)
Minimize \(C \) for a fixed production \(P \).

Rectangular:
\[\begin{array}{c}
Z \\
\hline
x \\
\hline
y \\
\end{array} \]

Maximize volume \(= xyz \)
for a fixed surface area \(A = 2xy + 2xz + 2yz \)

One way to solve: solve constraint equation and substitute into \(f \)

Eg. minimize \(f(x, y) = x^2 + y^2 \) subject to \(x + y = 1 \)

constraint equation \(x + y = 1 \) \(\Rightarrow \) \(y = 1 - x \)

\[f(x, y) = f(x, 1-x) = x^2 + (1-x)^2 = x^2 + 1 - 2x + x^2 \]
\[f = 2x^2 - 2x + 1 \]
\[0 = \frac{d}{dx} (2x^2 - 2x + 1) = 4x - 2 \]
\[x = \frac{1}{2} \]
\[y = 1 - x = \frac{1}{2} \]
\[f \left(\frac{1}{2}, \frac{1}{2} \right) = \left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \]
\[f = \left(\text{dist to } 0 \right)^2 \]

Observe: constraint curve is tangent to the level curve of \(f \) at the minimum.

Not always possible to solve constraint equation. Lagrange multipliers let us optimize without solving constraint.

2D Lagrange multipliers: Optimize \(f(x,y) \) subject to \(g(x,y) = c \)

Solve:
\[
\begin{cases}
 \nabla f (x,y) = \lambda \nabla g (x,y) \\
 g (x,y) = c
\end{cases}
\]

\(\lambda \) is a new variable called the Lagrange multiplier.
3 equations \[\begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g(x, y) = c \end{cases} \] 3 variables \(x, y, \lambda \)

Ex. \(f(x, y) = x^2 + y^2 \) subject to \(g(x, y) = x + y = 1 \)

\[\nabla f = \lambda \nabla g \quad \nabla f = \langle 2x, 2y \rangle \]

\[\nabla g = \langle 1, 1 \rangle \]

\[\langle 2x, 2y \rangle = \lambda \langle 1, 1 \rangle = \langle \lambda, \lambda \rangle \]

\[\begin{cases} 2x = \lambda \\ 2y = \lambda \\ x + y = 1 \end{cases} \quad \frac{\lambda}{2} + \frac{\lambda}{2} = 1 \quad \lambda = 1 \quad x = \frac{1}{2}, \ y = \frac{1}{2} \]

Minimum occurs at \(\left(\frac{1}{2}, \frac{1}{2} \right) \)

Minimum value \(f \left(\frac{1}{2}, \frac{1}{2} \right) = \frac{1}{2} \)

Multiplier equation says \(\nabla f \) is proportional to \(\nabla g \)

\[\nabla f = \lambda \nabla g \]

\[g(x, y) = c \]

Constraint

Level curves for \(f \)

Directional derivative \(> 0 \)

So it's possible to increase \(f \) while staying in \(g(x, y) = c \)
To summarize: at a constrained max or min

* The level curve for f is tangent to the curve $g(x,y) = C$.

∇f is parallel to the level curve of f

$\iff \nabla f$ is parallel to $g(x,y) = C$ (because level curves of f are tangent to each other)

OTOH ∇g is parallel to $g(x,y) = C$

This is a level curve of g.

∇f and ∇g are perpendicular to each other, so

the are parallel: $\nabla f = \lambda \nabla g$

3D Lagrange multipliers: Optimize $f(x,y,z)$
subject to $g(x,y,z) = C$ (constraint surface)

Solve

\[
\begin{cases}
\nabla f(x,y,z) = \lambda \nabla g(x,y,z) \\
g(x,y,z) = C
\end{cases}
\]
Maxima & minima occur when level surface of f is tangent to constraint surface $g = c$

4 equations in 4 unknowns x, y, z, λ

\[f(x, y, z) = x^2 + y^2 + z^2 \]
Constraint: $g(x, y, z) = x^4 + y^4 + z^4 = 1$

\[\nabla f = \langle 2x, 2y, 2z \rangle \]
\[\nabla g = \langle 4x^3, 4y^3, 4z^3 \rangle \]

\[\nabla f = \lambda \nabla g; \quad 2x = \lambda 4x^3 \]
\[2y = \lambda 4y^3 \]
\[2z = \lambda 4z^3 \]

\[x^4 + y^4 + z^4 = 1 \]

\[2x = \lambda 4x^3 \]
\[x = \lambda 2x^3 \rightarrow x = 0 \quad \text{or} \quad 1 = \lambda \cdot 2x^2 \]
\[y = \lambda 2y^3 \rightarrow y = 0 \quad \text{or} \quad 1 = \lambda \cdot 2y^2 \]
\[z = \lambda 2z^3 \rightarrow z = 0 \quad \text{or} \quad 1 = \lambda \cdot 2z^2 \]

Suppose x, y, z are all not zero.
\[x^2 = \frac{1}{2\lambda}, \quad y^2 = \frac{1}{2\lambda}, \quad z^2 = \frac{1}{2\lambda} \]
\[1 - x^4 + y^4 + z^4 = \left(\frac{1}{2\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 \]

\[1 = \frac{3}{4\lambda^2} \quad \frac{4\lambda^2}{3} = 1 \quad \lambda^2 = \frac{3}{4} \]

\[\lambda = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2} \]

\[x^2 = \frac{1}{2\lambda} = \pm \frac{1}{\sqrt{3}} \quad \text{minima is impossible} \]

\[x^2 = \frac{1}{\sqrt{3}} \quad x = \pm \frac{1}{\sqrt{3}} \]

So get solutions \(\lambda = \frac{1}{\sqrt{3}} \), \((x,y,z) = \left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}} \right) \)

8 solutions already!

Also need to consider what happens when \(x=0 \), \(y, z \neq 0 \)

\(x=0, y=0, z \neq 0 \) etc.

Example Global max/min for

\[f(x,y) = x^2 + y^2 + 4x - 4y \quad \text{on disk} \quad x^2 + y^2 \leq 9 \]

(i) critical points in interior
(ii) max/min on boundary \(x^2 + y^2 = 9 \)

Can think of (ii) as a constrained optimization
(i) \(\nabla f = \langle 2x+4, 2y-4 \rangle = 0 \)

\[
\begin{align*}
2x+4 &= 0 & x &= -2 & \text{(-2, 2)} \\
2y-4 &= 0 & y &= 2 \\
\end{align*}
\]

\[
x^2+y^2 = (-2)^2 + (2)^2 = 4 + 4 = 8 \leq 9
\]

So the critical point lies inside disk \(x^2 + y^2 \leq 9 \)

\[
f(-2, 2) = (-2)^2 + (2)^2 + 4(-2) - 4(2) = -8
\]

(ii) Max/min of \(f \) on curve \(g(x, y) = x^2 + y^2 = 9 \)

\[
\nabla f = \lambda \nabla g \quad \langle 2x+4, 2y-4 \rangle = \lambda \langle 2x, 2y \rangle
\]

\[
\begin{align*}
2x+4 &= \lambda \cdot 2x & \Rightarrow (2-2\lambda)x + 4 &= 0 \\
2y-4 &= \lambda \cdot 2y & x &= \frac{-4}{2-2\lambda} = \frac{2}{\lambda-1} \\
(2-2\lambda)y &= 4 & y &= \frac{4}{2-2\lambda} = \frac{2}{1-\lambda}
\end{align*}
\]

\[
\left(\frac{2}{\lambda-1} \right)^2 + \left(\frac{2}{1-\lambda} \right)^2 = 9
\]

\[
\begin{align*}
\frac{4}{(\lambda-1)^2} + \frac{4}{(\lambda-1)^2} &= 9 \\
\frac{8}{(\lambda-1)^2} &= 9 \\
(\lambda-1)^2 &= \frac{8}{9} \\
(\lambda-1) &= \pm \frac{2\sqrt{2}}{3} \\
\lambda &= 1 \pm \frac{2\sqrt{2}}{3}
\end{align*}
\]
\[x = \frac{2}{\lambda - 1} = \frac{2}{\pm \frac{3\sqrt{3}}{2}} = \pm \frac{3}{\sqrt{2}} \]

\[y = \frac{-2}{\lambda - 1} = -x \]

\[(x = \frac{3}{\sqrt{2}}, \ y = -\frac{3}{\sqrt{2}}), \quad f = (\frac{3}{\sqrt{2}})^2 + (\frac{3}{\sqrt{2}})^2 + 4(\frac{3}{\sqrt{2}}) - 4(\frac{3}{\sqrt{2}}) \]

\[(x = -\frac{3}{\sqrt{2}}, \ y = \frac{3}{\sqrt{2}}), \quad f = (\frac{3}{\sqrt{2}})^2 + (\frac{3}{\sqrt{2}})^2 + 4(\frac{3}{\sqrt{2}}) - 4(\frac{3}{\sqrt{2}}) \]

\[= \frac{9}{2} + \frac{9}{2} + \frac{8.3}{\sqrt{2}} \]

\[= \frac{9}{2} + \frac{9}{2} - \frac{8.3}{\sqrt{2}} \]

Multiple constraints: Optimize \(f(x,y,z) \) subject to two constraints \(g(x,y,z) = C \)

\[h(x,y,z) = k \]

Two Lagrange multipliers \(\lambda, \mu \)

\[\nabla f = \lambda \nabla g + \mu \nabla h \]

\[g(x,y,z) = C, \quad h(x,y,z) = k \]

5 equations in 5 variables \(x, y, z, \lambda, \mu \).