Conditional Probability

Office hours M 1-2, 3-4, W 9:30-10:30

\[P(E|F) = \text{probability that } E \text{ occurs given that } F \text{ occurs} \]

Condition

Importance
(i) compute probability w/partial information
(ii) break up problems into conditional ones which may be easier.
(iii) Reasoning about hypotheses/evidence (Bayes’s Formula)
(iv) Can define “independent events”

Suppose we are dealt 2 cards from a 52 card deck:

\[
\begin{bmatrix}
\text{Cards} & 13 \text{ values } 2, 3, 4, \ldots, 10, J, Q, K, A \\
\text{4 suits} & \text{Spades, hearts, diamonds, clubs}
\end{bmatrix}
\]

eg. Aspadee
Suppose dealt 2 cards \(P(2 \text{ aces}) \)?

\[
\binom{52}{2} = \text{ total \# 2 card hands}
\]

= \# points in \(S \)

\[
\binom{4}{2} = \text{ pairs of aces}
\]

\[
P(2 \text{ aces}) = \frac{\binom{4}{2}}{\binom{52}{2}} = \frac{\frac{4 \cdot 3}{2}}{\frac{52 \cdot 51}{2}} = \frac{4 \cdot 3}{52 \cdot 51}
\]

Suppose get 1 card at a time

\[P(2 \text{ aces} \mid \text{ first card is an Ace})\]

Prob of getting 2 aces given first card is an ace.

Thinking of drawing second card as a new experiment.

3 aces out of 51 cards left

\[
P(2 \text{ aces} \mid \text{ first is Ace}) = \frac{3}{51}
\]

\[
P(\text{1st card is an Ace}) = \frac{4}{52}
\]
See \(P(2\text{ aces}) = P(1\text{st card is Ace}) \cdot P(2\text{ aces | 1st card is A}) \)

\[
\frac{4 \cdot 3}{52 \cdot 51} = \frac{4}{52} \cdot \frac{3}{51}
\]

\[P(2\text{ aces | 1st and is A}) = \frac{P(2\text{ aces})}{P(1\text{st and is Ace})}\]

Formulate
\[
F = 1\text{st and is A}
\]
\[
E = 2\text{nd and is A}
\]

"2 aces" = EF

\(\Box \)

\[
P(E | F) = \frac{P(EF)}{P(F)}
\]

We promote \(\Box \) to a definition

If \(E \) and \(F \) are events, we define \(P(E | F) \) by \(\Box \)

\[P(E | F) = \text{"Prob E given F"}, \]

"Prob E conditional on F",

Suppose \(x \) is an outcome. If \(F \) occurs then \(x \) is in \(F \).

If we want \(E \) to also occur, we need \(x \) in \(E \) also.

So ultimately \(x \) is in \(EF \).

That's why we take \(P(EF) \)
\[1 = P(F \mid F) = \frac{P(FF)}{C} = \frac{P(F)}{C} \quad \text{so} \quad c = P(F) \]

So \(P(F) \) is a normalization.

Another interpretation: Given that \(F \) is known to occur: then we can replace the sample space \(S \) with the subset \(F \).

(reduced sample space)

Example: urn with \(r \) red and \(b \) blue balls

\(n \) balls chosen in order \(w/o \) replacement

\(n \leq r+b \)

Suppose \(k \) of \(n \) chosen are blue

what is \(P(1\text{st ball chosen is blue}) \)

We work in reduced sample space

\(B_k = \) event that \(k \) blue balls are chosen.

Each of the outcomes in \(B_k \) is equally likely.

(need to think)

Among the \(n \) balls chosen, the first is equally likely to be any of these \(n \), and there are \(k \) chances for it to be blue.
so \(P(\text{4th is bhw} \mid B_k) = \frac{k}{n} \)

Working w/ full sample space

\(B = \text{first ball chosen is bhe} \)

\(B_k = k \text{ bhw balls are chosen} \)

\[
P(B \mid B_k) = \frac{P(BB_k)}{P(B_k)}
\]

\[
P(BB_k) = P(B) \ P(B_k \mid B)
\]

\[
P(B_k \mid B) = \frac{P(Bk \mid B) \ P(B)}{P(B_k)}
\]

\[
P(B) = \frac{b}{r+b} \quad P(B_k) = \frac{(b^r)(n-k)}{(r+b)^n}
\]

\[
P(B_k \mid B) = \frac{(b-1)^r (n-k)}{(r+b-1)^{n-1}}
\]
\[P(B | B_K) = \frac{P(B_K | B) \cdot P(B)}{P(B_K)} = \frac{k}{n} \]