MA TH 580, FALL 2012 - HOMEWORK 10

WARMUP PROBLEMS: Section 9.1 #2–9. Section 9.2 #1, 3, 4, 5. Section 9.3 #3, 4, 5.
EXTRA PROBLEMS: Section 9.1 #6, 10, 11, 19, 28, 29, 34, 37. Section 9.2 #6, 8, 9, 11.
Section 9.3 #7, 10, 11, 18, 20, 36, 38. Do not write up.
WRITTEN PROBLEMS: Do five of the following six. Due Friday, November 16.

1. Use Euler’s Formula to count the regions formed by \(n \) lines in the plane, assuming that no two are parallel and no three have a common point.

2. Structure of Eulerian plane graphs. Let \(G \) be a connected plane graph whose vertex degrees are all even. Prove the following statements.
 a) \(G \) has an Eulerian circuit that does not cross itself.
 b) If also every bounded face is a triangle, then \(|E(G)|\) is divisible by 3.
 c) If also \(G \) is a maximal outerplanar graph, then \(|V(G)|\) is divisible by 3.

3. Prove that every 3-connected graph with at least six vertices that contains a subdivision of \(K_5 \) also contains a subdivision of \(K_{3,3} \).

4. Short proof of the Five Color Theorem.
 a) Let \(v \) be a 5-vertex in a plane graph \(G \). Let \(x \) and \(y \) be nonadjacent neighbors of \(v \), and let \(G' \) be the graph obtained from \(G \) by contracting the edges \(vx \) and \(vy \). Prove that if \(G' \) is 5-colorable, then \(G \) is 5-colorable.
 b) Use part (a) to give a short inductive proof of the Five Color Theorem.

5. Non-4-choosable planar graph of order 75.
 a) Prove that the graph below cannot be properly colored from the given lists, where the 5-valent vertices have lists of size 1 and the others have lists of size 4.
 b) Use part (a) to construct a 3-colorable planar graph on 75 vertices that is not 4-choosable. (Hint: It may help first to construct such a graph with 114 vertices and then one with 86 vertices.)

6. Let \(G \) be a connected plane graph such that \(\delta(G), \delta(G^*) \geq 3 \). Use balanced discharging to prove that \(G \) has a vertex of degree 3 on a face of length at most 5 or a vertex of degree at most 5 on a triangle. (Comment: The Platonic solids show that all five resulting configurations are needed.)