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Abstract

This paper presents strategies for improving the known upper and lower bounds
for the bandwidth of Hamming graphs (Kn)d and [0, 1]d. Our labeling strategy lowers
the upper bound on the bandwidth of the continuous Hamming graph, [0, 1]3, from
.5 to .4497. A lower bound of .4439 on bw([0, 1]3) follows from known isoperimetric
inequalities and a related dynamic program is conjectured to raise that lower bound
to 4/9 = .4444.... In particular, showing the power of our method, we prove that the
the bandwidth of K6 ×K6 ×K6 is exactly 101.

Keywords: Combinatorial optimization

1 Introduction

A simple graph, G = (V, E), consists of a set, V = V (G), of vertices, and a set, E ⊆
(

V
2

)
, of

(unordered) pairs of vertices called edges. Each edge is incident to (contains) two distinct
vertices. A standard example is Kn, the complete graph on n vertices with V = [n] =
{0, 1, . . . , n− 1} and E =

(
[n]
2

)
.

A numbering or labeling of G is a one-to-one and onto function, η : V (G) 7→ {1, 2, . . . , n},
where n = |V (G)|. The bandwidth of η is then

bw(η) = max
(v,w)∈E

|η(v)− η(w)|,

and the bandwidth of G is
bw(G) = min

η
bw(η).

Example 1 Every numbering of Kn has the same bandwidth, so bw(Kn) = n− 1.
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In general, calculating bw(G) is an intractable problem (NP-hard since the decision problem
bw(G) < k is NP-complete (see [5])), but it has been solved for a few families of graphs
having special properties. Among these is Kd

2 = K2×K2×· · ·×K2, the d-dimensional cube.
In [6] it is shown that

bw
(
Kd

2

)
=

d−1∑
k=0

(
k

bk/2c

)
. (1)

For a survey of results on the bandwidth problem see [4]. The bandwidth of the Hamming
graph, Kd

n = Kn × Kn × · · · × Kn, n > 2, has been an outstanding problem for at least
forty years and recently acquired additional interest by being applied to multicasting (see
[10, 3, 1]). This problem is investigated from a linear algebraic point of view in [2]. In [8] it
is shown that for n, d even,(

d

d/2

) (n

2

)d

≤ bw
(
Kd

n

)
≤ bw

(
Kd

2

) (n

2

)d

+
n

2
− 1. (2)

This indicates that for fixed d the order of magnitude of bw
(
Kd

n

)
is Θ(nd) as n → ∞ and

suggests passing to the continuous limit.

2 The Continuous Limit

In solving the bandwidth problem on Kd
n one may assume that the numbering, η, is monotone

increasing as a function of the coordinates, 0 < 1 < · · · < n − 1. This is a special case of
the theory of compression presented in Chapters 3 and 6 of [9]. It is shown there that
in many interesting cases of the bandwidth problem, the vertex set, V , may be given a
partial order and numberings restricted to be monotone with respect to that partial order
(i.e. if x ≤ y then η(x) ≤ η(y)). Passing to a continuous limit, we define a numbering of
the continuous Hamming graph, [0, 1]d, to be a monotone, measure-preserving (i.e. for all
measurable A ⊆ [0, 1], |η−1(A)| = |A|), upper semicontinuous function, η : [0, 1]d 7→ [0, 1].
As in the finite case, v, w ∈ [0, 1]d have an edge between them if they differ in exactly one
coordinate. Also

bw(η) = max
(v,w)∈E

|η(v)− η(w)|,

and
bw

(
[0, 1]d

)
= min

η
bw(η).

Example 2 For d = 1 the identity, ι(x) = x, is the only monotone measure-preserving
function, η : [0, 1] 7→ [0, 1], so bw([0, 1]) = 1.

Theorem 1 limn→∞ bw
(
Kd

n

)
/nd ≥ bw

(
[0, 1]d

)
.

Proof: The fact that the limit exists follows from (1), (2) and [8]. Every monotone numbering
η : Kd

n 7→ {1, . . . , nd} may be “blown up” to a numbering η : [0, 1]d 7→ [0, 1] by filling
in each cube of side 1/n whose maximum element is 1

n
x = (x1/n, x2/n, . . . , xd/n) with

values between (η(x)−1)/nd and η(x)/nd in a monotone and measure-preserving way. Then
bw (η) ≤ (bw (η) + 1) /nd so

lim
n→∞

bw
(
Kd

n

)
/nd ≥ bw

(
[0, 1]d

)
.
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We believe that equality should hold in Theorem 1. We had thought to prove it by showing
that the ”blown up” numberings are dense in the set of all numberings, but a colleague
(at UCR), Jim Stafney, found a counterexample. If the reverse inequality does hold, then
bw

(
[0, 1]d

)
is equal to the leading coefficient (of nd) in the asymptotic expression for bw

(
Kd

n

)
as n →∞.

Theorem 2 For d even,
(

d
d/2

)
/2d ≤ bw

(
[0, 1]d

)
≤

d−1∑
k=0

(
k

bk/2c

)
/2d.

Proof: The upper bound for bw
(
[0, 1]d

)
follows from Theorem 1 and formulas (1) and (2).

The lower bound follows from the argument (in [8]) that
(

d
d/2

) (
n
2

)d ≤ bw
(
Kd

n

)
. The left-

hand side of this inequality was given by the solution of the vertex-isoperimetric problem on
the continuous Hamming graph, so it applies equally well to bw

(
[0, 1]d

)
. 2

Note that the upper bound in Theorem 2 is valid regardless of the parity of d.

Example 3 bw ([0, 1]2) = 1/2, since for d = 2 the lower and upper bound of Theorem 2 are
both 1/2. One numbering of [0, 1]2 with bandwidth 1/2 is defined as follows:

η(x, y) =

{
y/2 if (x, y) ∈ [0, 1/2]× [0, 1]
(1 + y)/2 if (x, y) ∈ (1/2, 1]× [0, 1].

That η is measure-preserving follows from the fact that for t ∈ [0, 1/2], |η−1([0, t])| = |{(x, y) |
0 ≤ x ≤ 1/2 and 0 ≤ y ≤ 2t}| = (1/2)2t = t and similarly for t ∈ [1/2, 1]. In Figure 1 the
solid lines represent level curves of η and the dashed line divides the square into two parts
where the function takes values less than 1/2 and greater than 1/2. The numbering is not
symmetric (i.e. invariant under interchange of coordinates), but is self-dual (i.e. invariant
under the map that sends (x, y) to (1− x, 1− y) and η(x, y) to 1− η(1− x, 1− y).

Figure 1: A self-dual asymmetric numbering of [0, 1]2 with bandwidth 1/2.
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To the reader unfamiliar with measure theory, it may seem strange that that our definition
of “numbering” for the continuous Hamming graph does not require η to be one-to-one.
However, Theorem 1 and the remarks following it are strong evidence that this definition is
natural and useful.

Example 4 Another optimal numbering, both symmetric and self-dual, is

υ(x, y) =



t2 if (x, y) ∈ [0, 1/2]× [0, 1/2],
1/2− (1− t)2 if (x, y) ∈ ([0, 1/2]× [1/2, 1]) ∪ ([1/2, 1]× [0, 1/2])

and y ≤ 1− x,
1/2 + u2 if (x, y) ∈ ([1/2, 1]× [0, 1/2]) ∪ ([0, 1/2]× [1/2, 1])

and y > 1− x,
(1− u)2 (x, y) ∈ [1/2, 1]× [1/2, 1],

where t = max{x, y} and u = min{x, y}. The level curves of υ are shown in Figure 2.

@@

@@

@@

@@

@@

@@

@@

@@

Figure 2: A self-dual and symmetric numbering of [0, 1]2 with bandwidth 1/2.

Example 5 As d →∞, the lower and upper bounds in Theorem 2 are asymptotically equal
so

bw
(
[0, 1]d

)
'

√
2

πd
, as d →∞.

(see [8] for details).

Up to this point in our discussion of the bandwidth problem on the continuous Hamming
graph we have followed [8] in assuming that the dimension, d, is even. This was a simplifying
assumption made because of the author’s conjecture that the upper bound, bw

(
[0, 1]d

)
≤

d−1∑
k=0

(
k

bk/2c

)
/2d, is sharp. The same upper bound also holds in odd dimensions and he expected

that the lower bound in this case could be improved to meet it. However, the lower bound
turns out to be closer to the truth. The lower bound is actually a combination of two bounds,
which happen to coincide in even dimensions but not odd.

The computation of bandwidth is closely related to the isoperimetric problem in graphs. In
[9], Section 4.5.2, it is shown that for any (finite) graph, G,

bw(G) ≥ min
η

max
0≤k≤n

|Φ(Sk(η))|.
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where
Sk(η) = {v ∈ V | η(v) ≤ k}

and for S ⊆ V ,
Φ(S) = {w ∈ V − S | ∃(v, w) ∈ E and v ∈ S}.

Φ(S) is called the vertex-boundary of S. The problem of computing

min
η

max
0≤k≤n

|Φ(Sk(η))|

is a dynamic program, i.e. minimum path problem for which Bellman’s Principle of Opti-
mality holds (see [9], Chapter 2). It is easy to see that

min
η

max
0≤k≤n

|Φ(Sk(η))| ≥ max
0≤k≤n

min
S⊆V
|S|=k

|Φ(S)|.

In graph theory, the problem of calculating min S⊆V
|S|=k

|Φ(S)| for 0 ≤ k ≤ n is known as

the vertex-isoperimetric problem (VIP). In general the VIP is just as intractable (i.e. NP-
complete) as the bandwidth problem, but it (the VIP) has been solved [7] for the continuous
Hamming graph, [0, 1]d.

When the vertex-set, V , is partially ordered and numberings must be monotone functions,
then their initial segments, Sk(η), are ideals in the partial order (a subset, S, of a poset P ,
is called an ideal if x ≤ y ∈ S implies x ∈ S). Certain ideals are of particular interest in the
continuous Hamming graphs: In [n]d the Hamming ball of radius r centered at 0 d) is the set

HB(n, r, d) =
{
x ∈ [n]d : |{i : xi > 0}| ≤ r

}
.

A monotone onto function ϕ : [n] → [m] is called a quotient of n by m and extends naturally
to ϕ : [n]d → [m]d by defining

ϕ(x1, x2, . . . , xd) = (ϕ(x1), ϕ(x2), . . . , ϕ(xd)).

Then the quotient Hamming ball,

QHB(n, m, r, d; ϕ) = ϕ−1(HB(m, r, d)).

These definitions also make sense when n = ∞, i.e. [n] is replaced by [0, 1]. The following
facts concerning the quotient Hamming balls are borrowed from [7]. It is shown there
that certain QHB(∞, 2, r, d; ϕ) are the critical sets for the VIP on [0, 1]d. Denoting t =
max ϕ−1(0), the volume of QHB(∞, 2, r, d; ϕ) is

v (r, d; t) =
r∑

i=0

(
d

i

)
td−i(1− t)i

and its boundary is

|Φ(r, d; t)| =
(

d

r + 1

)
td−r−1(1− t)r+1.

Each quotient Hamming ball minimizes the vertex-boundary, |Φ(S)|, for some interval of
values of the volume, see [7] for details.

For dimensions, d, that are even, the solution of the VIP on [0, 1]d gives the bound
(

d
d/2

)
/2d ≤

bw
(
[0, 1]d

)
. Since there is a nested family of sets, the quotient Hamming balls of radius
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(d/2)−1 with 0 ≤ t ≤ 1, that achieve this lower bound at t = 1/2, the dynamic programming
lower bound and the VIP lower bound coincide.

For odd dimensions the lower bound for VIP is given by the intersection of the boundary
functionals for the Hamming balls of radius (d − 3)/2 and (d − 1)/2, although there is no
nice formula for it. On the other hand, the solution of the dynamic program for this case
is not known and it is conjectured that the mentioned quotient Hamming balls are optimal.
There is a beautiful formula(

d

d(d− 1)/2e

)
d(d− 1)/2ed(d−1)/2eb(d + 1)/2cb(d+1)/2c,

which holds for both even and odd values of d. Table 1 displays some values of lower bounds
obtained from VIP (VIP), dynamic program with the conjectured optimal values (DP), and
upper bounds (UB) computed by the formulas given in this section. For odd dimensions VIP
was calculated as the crossover value for boundary functions of the quotient Hamming balls
of radius (d − 3)/2 and (d − 1)/2 (see [7] for details)). The last column give the values of

∆ = UB−VIP
VIP = UB

VIP − 1, the relative difference between the best upper and lower bounds.
Note that ∆ increases up to a maximum at d = 5 and then decreases, going to zero at infinity
(this follows from Example 4).

d VIP DP UB ∆
1 1 1 1 0
2 .5 .5 .5 0
3 .4439 .4444 .5 .1263
4 .3750 .3750 .4375 .1667
5 .3454 .3456 .4062 .1760
6 .3125 .3125 .3594 .1501
7 .2937 .2938 .3359 .1437
8 .2734 .2734 .3047 .1145
9 .2602∗ .2602∗ .2891 .1111
10 .2461 .2461 .2676 .0874

∗ These two values are not actually equal, but are the same when rounded off to four
decimal places.

Table 1: Bounds for the bandwidth.

3 New Bounds on Bandwidth

3.1 Bounds for K6 ×K6 ×K6

The best bounds known for bw (K3
6) were 96 ≤ bw (K3

6) ≤ 110. We improve both bounds
showing that bw (K3

6) = 101.
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3.1.1 Upper Bound

The best previous upper bound (from [8], reviewed in Section 1) is 4 · 27 + (6/2)− 1 = 110.
This formula is a special case of that for [n]d, n even, which was derived from the optimal
numbering for [2]d, and conjectured (in [8]) to be optimal for all n (even) and all d. The
following tables give a numbering of [6]× [6]× [6] (the vertex set of K6 ×K6 ×K6) that has
bandwidth 101:

1 2 9 28 65 89
3 4 10 29 67 90

13 14 15 30 69 107
37 38 39 43 71 132
77 79 81 83 163 175
91 92 101 124 164 189

5 6 11 31 66 93
7 8 12 32 68 94

16 17 18 33 70 108
40 41 42 44 72 141
78 80 82 84 165 176
95 96 102 131 166 194

19 20 23 34 73 115
21 22 24 35 74 116
25 26 27 36 75 123
45 46 47 48 76 144

117 119 121 134 173 201
118 120 122 135 174 202

49 50 53 58 145 146
51 52 54 59 151 152
55 56 57 60 155 156
61 62 63 64 159 160

147 149 153 157 205 206
148 150 154 158 207 208

85 86 103 125 161 185
87 88 104 127 167 188

109 110 111 129 169 197
133 137 139 142 171 199
177 179 181 183 209 210
186 187 195 203 211 212

97 98 105 126 162 190
99 100 106 128 168 191

112 113 114 130 170 198
136 138 140 143 172 200
178 180 182 184 213 214
192 193 196 204 215 216

This numbering was constructed to make the vertex-boundaries of its initial segments as
close as possible to the dynamic programming lower bound. The quotient Hamming balls
of radius 0 minimize vertex-boundary for small |S| and those of radius 1 minimize for large
|S|, so it starts off with subcubes (quotient Hamming balls of radius 0) up to 4×4×4 (Note
that 4/6 = 2/3, which just happens to be the side of the subcube that minimizes maximum
vertex boundary in [0, 1]3). The subcube then grows “arms” that eventually transform it
into a quotient Hamming ball of radius 1. However, great care had to be taken in the
process of interpolating between the two, to achieve the bandwidth of 101. Note that the
numbering is not stable (i.e. unchanged by left-shifting) nor is it self-dual (isomorphic to
its reverse numbering). It not only gives a better upper bound for bw (K6 ×K6 ×K6), but
by the “blowing up” procedure in the proof of Theorem 1 it gives an upper bound of 101

215

for bw ([0, 1]3). Actually, the argument in Theorem 1 gives a slightly larger upper bound of
101+1
216

= 102
216

, but if the same numbering is used recursively to “blow up” the subcubes, the
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upper bound, c, must satisfy the equation

c =
101 + c

216

whose solution is 101
215

= 0.469 8. This is considerably better than the the previous best known
value of .5 and halfway the lower bound displayed in Table 1 of .4439.

3.1.2 Lower Bound

Perhaps even more remarkable is that the numbering above can be shown to minimize the
bandwidth of K6 × K6 × K6. The solution of the vertex-isoperimetric problem on [0, 1]3

gives a lower bound of d(.4439) × 216e = 96 for bw ([6]3). Solution of the discrete VIP, by
generating all 1.48×1012 ideals in [6]× [6]× [6] and evaluating their vertex boundaries, gives
a lower bound of 100 for bw (K3

6). We used an algorithm of lexicographic generation of the
ideals represented by their characteristic vectors. This calculation took about 6 days on a
2.5 GHz PC, which made the VIP dynamic programming lower bound seem impractical to
calculate.

However, the lower bound of 101, which shows our upper bound to be sharp, was achieved
in a calculation of about the same length by restricting the dynamic program to “good”
ideals, those with |Φ(S)| ≤ 100. In turns out that in this case |S| ≤ 64. This variant of the
Branch and Bound strategy works beautifully because the requirement that ideals be “good”
eliminates most of them from consideration just when the number of ideals (of cardinality
k) becomes too large.

To present some details of this strategy, denote by P the poset of all ideals S ⊆ K6 × K6

with |Φ(S)| ≤ 100 ordered by inclusion. It turns out that |P | = 323795 and it took about
30 minutes of CPU time to generate P from a huge list of all ideals obtained in the long run
above. If there is no increasing chain in P from the empty ideal to an ideal of size 64, then
bw (K3

6) > 100. It turns out that the number of ideals S ∈ P with 1 ≤ |S| ≤ 47 increases
from 1 to 31820 for size 23, then goes down to 9 for size 47. It then goes up to 84 for size 52
and then goes down again to 3 for size 55. To check the non-existence of a numbering with
bandwidth 100 we ran a DFS on P and computed the maximum length of increasing chain
in P . It took about a second. The DFS has visited 323035 vertices out of 323795. Out of
those, 10924 vertices have no way out (they lead to ideals with boundary exceeding 100),
and 760 are unreachable (they are reachable in the complete poset of ideals from ideals with
boundary exceeding 100). It turns out that the DFS has not visited any ideal of size 51.
Furthermore, out of 12 ideals of size 50 only 6 are reachable from size 49.

Therefore, the program showed that the longest chain of nested “good” ideals starting with
∅ terminates with |S| = 50. Thus every numbering, η, of [6]3, which corresponds to a nested
family of ideals, {Sk(η) : 0 ≤ k ≤ 216}, must have some k such that |Φ(Sk(η))| > 100 and
so bw ([6]3) ≥ 101.

3.2 A Nearly Sharp Numbering for [0, 1]3

Our numbering of [6]3 decreased the known upper bound on bw ([6]3) by a surprising amount,
even decreasing the known bandwidth of [0, 1]3. This led us to try the same numbering strat-
egy on [0, 1]3 directly. The result was the following numbering: First we fix two constants,
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a, b ≥ 0 with a + b ≤ 1. The values a and b will be determined at the end so as to optimize
the result. To define the numbering, we partition [0, 1]3 into six, essentially disjoint, regions.

Region I: [0, a]3.

Region II: [0, a]× [0, a]× [a, a + b] ∪ [0, a]× [a, a + b]× [0, a] ∪ [a, a + b]× [0, a]× [0, a].

Region III: [0, a]× [0, a]× [a + b, 1] ∪ [0, a]× [a + b, 1]× [0, a] ∪ [a + b, 1]× [0, a]× [0, a]

Region IV: [0, a]× [a, 1]× [a, a + b] ∪ [0, a]× [a, a + b]× [a, 1] ∪ [a, a + b]× [0, a]× [a, 1] ∪
[a, a + b]× [a, 1]× [0, a] ∪ [a, 1]× [0, a]× [a, a + b] ∪ [a, 1]× [a, a + b]× [0, a].

Region V: [0, a]× [a+b, 1]× [a+b, 1]∪ [a+b, 1]× [0, a]× [a+b, 1]∪ [a+b, 1]× [a+b, 1]× [0, a].

Region VI: [a, 1]3.

The numbering was motivated by [8], where it is proved that there two different types of
optimal shapes: one is the cube (like Regions I and VI), the other has the shape of the union
of Regions I,II and III. In the construction below we tried to use a labeling which smoothly
connects those two shapes, keeping the bandwidth as small as possible. Before putting any
numbers into Region i + 1, we completely fill Region i. Each Region is filled as follows:

Region I: The number t3 will be assigned to any point, (x, y, z) ∈ [0, a]3 with max{x, y, z} =
t. Thus the level surfaces of this function, in this Region, will be the faces of the subcube
[0, t]3.

Region II: We build up simultaneously the three faces of [0, a]3, assigning value a3 + 3a2t
to any point (x, y, a+ t) ∈ [0, a]× [0, a]× [a, a+ b], (x, a+ t, z) ∈ [0, a]× [a, a+ b]× [0, a]
or (a + t, y, z) ∈ [a, a + b]× [0, a]× [0, a].

Region III: Again we symmetrically fill the three boxes. The points in [0, a]×[0, a]×[a+b, 1]
of the form (x, t, z) with x ≤ t or (t, y, z) with y ≤ t will be assigned value a3 + 3a2b +
3(1−a− b)t2 and symmetrically for [0, a]× [a+ b, 1]× [0, a] and [a+ b, 1]× [0, a]× [0, a].

Region IV: Again we fill the six boxes symmetrically, but in this case there is the slight
complication that the boxes are not pairwise disjoint. The points in [0, a] × [a, 1] ×
[a, a + b] of the form (x, y, t) with y ≥ t will be assigned value a3 + 3a2(1− a) + 6(t−
a)a(1− a)− 3a(t− a)2.

Region V: Again we fill the three boxes symmetrically. The points of [0, a] × [a + b, 1] ×
[a+ b, 1] of the form (t, y, z) will be assigned value a3 +3a2(1−a)+6ab(1−a)−3ab2 +
3(1− a− b)2t.

Region VI: Here it does not really matter what the labeling is, but for the sake of consis-
tency and clarity, we assign the point (x, y, z) ∈ [a, 1]3, such that t = min{x, y, z}, the
value 1− (1− t)3.

Note the function, f : [0, 1]3 → [0, 1] is defined to be monotone increasing and measure
preserving.

Now we look at the calculation of upper bounds of the maximal differences between neigh-
boring points. Neighboring pairs of points agree in two coordinates. From our requirement
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of monotonicity, we need only consider those pairs for which the one coordinate they differ
in will have a 0 in one and a 1 in the other. Since no Region contains both members of such
a pair and some pairs of Regions do not share such a pair, it suffices to check the maximum
difference between the following pairs of Regions:

(i) Region I – Region III: Points corresponding to the same value of t, 0 ≤ t ≤ a, will have
difference [a3+3a2b+3(1−a−b)t2]−t3. This function is maximized at t = 2(1−a−b).
If 2 ≤ 3a + 2b then it can be achieved, and the maximum is a3 + 3a2b + 4(1− a− b)3.
Otherwise, 2 ≥ 3a + 2b and the maximum value, at t = a, is 3a2 − 3a3. Thus we have

f1(a, b) =

{
a3 + 3a2b + 4(1− a− b)3 if 2 ≤ 3a + 2b
3a2 − 3a3 if 2 ≥ 3a + 2b

.

(ii) Region II – Region IV: Points corresponding to the same value of t, 0 ≤ t ≤ b, will have
difference [a3+3a2(1−a)+6a(1−a)t−3at2]−(a3+3a2t) = 6at+3a2−3a3−3at2−9a2t. As
a function of t this reaches its maximum when t = (2−3a)/2. If (2−3a)/2 ≤ b (which is
equivalent to 2 ≤ 3a+2b), then the maximum value is 3a2−3a3+ 3

4
(2−3a)2. Otherwise,

2 ≥ 3a + 2b and the maximum, achieved at t = b, is 3a2 − 3a3 + 3a(2 − 3a)b − 3ab2.
Thus we have

f2(a, b) =

{
3a2 − 3a3 + 3

4
(2− 3a)2 if 2 ≤ 3a + 2b

3a2 − 3a3 + 3a(2− 3a)b− 3ab2 if 2 ≥ 3a + 2b
.

(iii) Region III – Region V: Points corresponding to the same value of t, 0 ≤ t ≤ a, have
difference [a3+3a2b+3(1−a−b)t2]−[a3+3a2(1−a)+6ab(1−a)−3ab2+3(1−a−b)2t] =
3a2(1 − a) + 6ab(1 − a) − 3ab2 + 3(1 − a − b)2t − 3a2b − 3(1 − a − b)t2. This reaches
its maximum at t = (1− a− b)/2 < a, so its maximum is

f3(a, b) = 3a2 − 3a3 + 6ab− 9a2b− 3ab2 +
3

4
(1− a− b)3.

(iv) Region IV – Region VI: Points corresponding to the same value of t, a ≤ t ≤ a + b will
have difference

1− (1− t)3 − [a3 + 3a2(1− a) + 6(t− a)a(1− a)− 3a(t− a)2].

As a function of t this reaches its maximum when t = 1 − 2a. If a ≤ 1 − 2a (which
is equivalent to a ≤ 1/3), then the maximum value is 3a3 + 3a2 − 3a + 1. Otherwise,
a ≥ 1/3 and the maximum, achieved at t = a, is 3a3 − 6a2 + 3a. Thus we have

f4(a, b) =

{
3a3 + 3a2 − 3a + 1 if a ≤ 1/3
3a3 − 6a2 + 3a if a ≥ 1/3

.

(v) Region V – Region VI: The maximum difference is between the least value of Region V
and the largest of Region VI so

f5(a, b) = (1− a)3 + 3(1− (a + b))2a.

We wish to minimize the maximum of the five functions, f1, f2, f3, f4 and f5. With the aid
of Maple, we found that this min-max is assumed at a = .6023, b = .1676 where f1, f2, f3

take the common value .4497, f4 = .285 79 and f5 = .158 6.

Therefore we proved our main result:

Theorem 3 The bandwidth of (Kn)3 is at most .4497n3 + o(n3).
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4 Comments and Conclusions

We have made progress on a fundamental mathematical problem, calculating bw ([0, 1]3).
In [8] it was conjectured that the optimal numbering of [2]d showed how to optimize the
bandwidth of [0, 1]d for all d. In this paper we see that a weighted version of [3]d does better
for d = 3, decreasing the relative difference, ∆ = (UB/VIP) − 1 from .1263 to .0131, a
90% reduction. If the dynamic programming lower bound can be proven to be 4/9 = .4444,
that would reduce ∆ by another 10%. However, not being able to achieve the precise
determination of bw ([0, 1]3) that we had sought and anticipated has been frustrating. The
same methods should work for d = 4, 5 etc., lowering the known upper bounds, but seem
unlikely to give exact calculations unless we can figure out how to do it in 3 dimensions.
Note that even the authors have a diverse opinion if the labeling described for (Kn)3 is
asymptotically best possible or not.
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