Suppose \(a = 1, \ L = 1 \) and we are looking for the solution of

\[
\begin{align*}
 u_{tt} &= u_{xx}, \\
 u(0, t) &= u(L, t) = 0 \quad \text{for all} \ t, \\
 u(x, 0) &= f(x) \quad 0 < x < L \\
 u_t(x, 0) &= 0 \quad 0 < x < L,
\end{align*}
\]

where \(f(x) \) is the function \(cx \) for \(0 \leq x \leq 1/2 \) and \(c(1-x) \) for \(1/2 \leq x \leq 1 \). Usually \(c \) is something small for a plucked string so let’s suppose \(c = 0.05 \). Here are the plots for time \(t = 0, \ t = 0.25, \ t = 0.5 \) and \(t = 1 \). We let \(F(x) \) be the odd extension of \(f(x) \).