MATH 241, Calculus III
Midterm I
19 February 2015

Name: __

- No hats or dark sunglasses. All hats are to be removed.

- All book bags are to be closed and placed in a way that makes them inaccessible. Do not reach into your bag for anything during the exam. If you need extra pencils, pull them out now.

- No cell phones. Turn them off now. If you are seen with a cell phone in hand during the exam, it will be construed as cheating and you will be asked to leave. This includes using it as a time-piece.

- No music systems (IPODs, MP3 players, etc.), calculators, or cell phones.

- The exam is worth a total of 100 points. Check to see that you have all nine problems.

- **Show ALL your work and reasoning** to receive full credit.

- Good luck. You have **50 minutes** to complete the exam.

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>15</td>
<td>6</td>
<td>5</td>
<td>18</td>
<td>15</td>
<td>8</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
</tr>
</tbody>
</table>
1. (15 points) Consider the points $A = (1, 2, 3)$, $B = (0, 2, 1)$, and $C = (4, 0, 3)$ in \mathbb{R}^3.

(a) Find a normal vector \mathbf{n} to the plane P containing the points A, B, C.

(b) Give an equation for the plane P.

(c) Find the area of the parallelogram spanned by the vectors \mathbf{AB} and \mathbf{AC}.

(d) Consider the line L given by the parametrization $\mathbf{r}(t) = (3 + t, -2 - t, 2)$. Is L parallel to the plane P? Why or why not?
2. (6 points) Let L be the line parametrized by $\mathbf{r}(t) = \mathbf{a} + t\mathbf{b}$ where $\mathbf{a} = \langle -3, 0, -3 \rangle$ and $\mathbf{b} = \langle 3, 2, 4 \rangle$. Find the point Q of intersection of the line L with the plane $3x - y + 2z = 15$.

3. (5 points) Find the midpoint M of the straight-line segment between the points $P = (5, 2, 6)$ and $Q = (7, -1, 3)$.
4. (18 points) For each function

(a) $x^2 - y^2$
(b) $y \cos(x)$
(c) $e^{-x^2-y^2}$

label its graph and its level set diagram from the options below. Here each level set diagram consists of level sets $\{f(x, y) = c_i\}$ drawn for evenly spaced c_i.

Page 4 Please go on to the next page...
5. (15 points) EXACTLY one of the following limits exists. Circle the one that exists AND either evaluate it or prove the other limit does not exist.

\[\lim_{(x,y) \to (0,0)} \frac{yx^2 + y^2x}{x^3 + y^3} \quad \text{and} \quad \lim_{(x,y) \to (0,0)} \frac{xy^4}{(x^2 + y^2)^2} \]

6. (8 points) Is \(u = e^{-4t} \sin(2x) \) a solution of the heat equation, that is, does \(u_t = u_{xx} \)?
7. (15 points) This question has two parts. Level curves are shown for a function \(f \).

(a) Determine whether the following are positive, negative, or zero at the point \(P \).

\[
\begin{array}{cccccc}
 f_x & f_y & f_{xx} & f_{yy} & f_{xy} & D_v(f) \\
\end{array}
\]

(b) Draw a vector in the direction of \(\nabla f(p) \) on the picture.

8. (10 points) Find an equation of the tangent plane to \(z = xy + \ln(x^2 + y^2) \) at \((x, y) = (0, 1) \).
9. (8 points) Suppose f is a differentiable function of x and y, and
$g(u, v) = f(u^2 + \cos v, e^v + \sin u)$. Use the table of values to calculate $g_u(0, 0)$ and $g_v(0, 0)$.

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>f_x</th>
<th>f_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0,0)$</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>$(1,1)$</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>