Lecture 3, Math 444

Joseph Miles
Created by Jinhyung To

University of Illinois at Urbana-Champaign
Recall: Countably Infinite Sets

Recall: A set A is countably infinite if \exists bijection $f : \mathbb{N} \to A$.
Lemma: Infinite Subsets of the Natural Numbers

Lemma 1: If \(A \) is an infinite subset of \(\mathbb{N} \), then \(A \) is countably infinite.

Proof: Using Well-Ordering of \(\mathbb{N} \), we let \(a_1 \) be the smallest element of \(A \).

Note \(A - \{a_1\} \).
By Well-Ordering we choose

\(a_2\), the smallest element of \(A - \{a_1\}\).

Note \(a_1 < a_2\) since \(a_1\) was chosen in preference to \(a_2\) at the first step.

Note \(A - \{a_1, a_2\}\) is infinite.
Let a_3 be the smallest element of $A - \{a_1, a_2\}$.

Note $a_1 < a_2 < a_3$ since a_2 was chosen in preference to a_3 at the previous step.

Note a_3 is the third smallest element.
Continue, using Well-Ordering Property, to identify for each $n \in \mathbb{N}$ the n^{th} smallest member a_n of A.

$a_1 < a_2 < a_3 < ...$
Define $f : \mathbb{N} \rightarrow A$ by $f(n) = a_n$.

(i) f is 1–1: Suppose i and j are different positive integers. WLOG, $i < j$,

then $f(i) = a_i < a_j = f(j)$ \(\checkmark \)

Thus $f(i) \neq f(j)$. So f is 1–1.
(ii) Consider an arbitrary $n_0 \in A$.

Certainly n_0 is the i^{th} smallest member of A for some $i < n_0$. So $f(i) = a_i = n_0$.

So, n_0 is in the range of f. f is surjective.

∴ f is a bijection. ✓
Lemma: Surjection from the Natural Numbers

Lemma 2: Suppose $f : \mathbb{N} \rightarrow B$ is a surjection. Then B is countable.

Proof: Case I: Suppose B is finite. Then B is countable by definition.
Case II: Suppose B is infinite.

Consider $b \in B$. Let $L_b = \{ n \in \mathbb{N} : f(n) = b \}$.

Since f is a surjection, L_b is a nonempty set of positive integers.
Define $g : B \to \mathbb{N}$ by $g(b) = \text{smallest member of } L_b$ using Well-Ordering Property. Note since $g(b) \in L_b$ that $f(g(b)) = b \ \forall b \in B$.

Claim: g is $1-1$.
Justify the claim.

Suppose b_1 and b_2 are in B and

$g(b_1) = g(b_2)$. Must show $b_1 = b_2$.
Thus

\[
\begin{align*}
 b_1 &= f(g(b_1)) = f(g(b_2)) = b_2 \\
 \text{Since } g(b_1) &= g(b_2)
\end{align*}
\]

This shows that \(g \) is an injection.

Consider the direct image \(g(B) = \{g(b) : b \in B\} \subset \mathbb{N} \)

Clearly \(g \) is a surjection of \(B \) onto \(g(B) \)
\[\mathbb{N} \xrightarrow{f \text{ surjection}} B \]

\[g \text{ bijection} \]

\[g^{-1} \text{ bijection} \]

\[g(B) \]
Claim: $g(B)$ is an infinite subset of \mathbb{N}.

Justify: Suppose $g(B)$ is finite. Seek \otimes

If $g(B) = \{g(b) : b \in B\}$ is finite, then $\{f(g(b)) : b \in B\}$ is also finite.

But $\{f(g(b)) : b \in B\} \not= \{b : b \in B\} = B$

Desired \otimes Claim \checkmark infinite set
By Lemma 1, \(\exists \) bijection \(h : \mathbb{N} \to g(B) \)

Then \(g^{-1} \circ h : \mathbb{N} \to B \) is a bijection
$\mathbb{N} \xrightarrow{f \text{ surjection}} B \xrightarrow{g \text{ bijection}} g(B) \xrightarrow{g^{-1} \text{ bijection}} B \xrightarrow{h} \mathbb{N}$
By Lemma 1, \(\exists \) bijection \(h : \mathbb{N} \to g(B) \)

Then \(g^{-1} \circ h : \mathbb{N} \to B \) is a bijection

Thus \(B \) is countably infinite by definition.
Prop: Suppose for each $n \in \mathbb{N}$ that A_n is a countable set. Then $\bigcup_{n=1}^{\infty} A_n$ is countable.

Proof: We treat the case (most challenging) where each A_n is countably infinite.
\[A_1 = \{a_{11}, a_{12}, a_{13}, a_{14}, \ldots\} \]

\[A_2 = \{a_{21}, a_{22}, a_{23}, a_{24}, \ldots\} \]

\[A_3 = \{a_{31}, a_{32}, a_{33}, a_{34}, \ldots\} \]

\[A_4 = \{a_{41}, a_{42}, a_{43}, a_{44}, \ldots\} \]
Define $f : \mathbb{N} \to \bigcup_{n=1}^{\infty} A_n$ as follows

\begin{align*}
 f(1) &= a_{11} & f(4) &= a_{31} & f(7) &= a_{41} \\
 f(2) &= a_{21} & f(5) &= a_{22} & \vdots \\
 f(3) &= a_{12} & f(6) &= a_{13} & \vdots
\end{align*}
Clearly this leads to a surjection $f : \mathbb{N} \to \bigcup_{n=1}^{\infty} A_n$

and so $\bigcup_{n=1}^{\infty} A_n$ is countable by Lemma 2.

Check: $a_{ij} = f \left(\frac{(i + j - 2)(i + j - 1)}{2} + j \right)$
Positive Rational Numbers

Def: $\mathbb{Q}^+ = \mathbb{Q} \cap (0, \infty)$, the positive rationals

$A_1 = \left\{ \frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \frac{4}{1}, \ldots \right\}$

$A_2 = \left\{ \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{4}{2}, \ldots \right\}$

$A_3 = \left\{ \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, \ldots \right\}$

$A_n = \left\{ \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \frac{4}{n}, \ldots \right\}$

Note each A_n is countable.

Also $\mathbb{Q}^+ = \bigcup_{n=1}^{\infty} A_n$
Note if $x \in \mathbb{Q}^+$, then $x = \frac{p}{q}$, where p and q are in \mathbb{N}.

Note x appears in p^{th} position of A_q.

Thus \mathbb{Q}^+ is countably infinite.
Negative Rational Numbers

Let \(\mathbb{Q}^- = \mathbb{Q} \cap (-\infty, 0) \) negative rationals.

\[f : \mathbb{Q}^+ \to \mathbb{Q}^- \text{ given by } f(x) = -x \text{ is} \]

clearly a bijection.

We conclude that \(\mathbb{Q}^- \) is countably infinite.
The whole Rational Numbers

Finally, \(\mathbb{Q} = \mathbb{Q}^+ \cup \{0\} \cup \mathbb{Q}^- \)

is a union of 3 countable sets and so is countable.
Easier Cases of the Proposition

Going back -

In our proof that $\bigcup_{n=1}^{\infty} A_n$

is countable, if some A_n are finite

or there are only finitely many A_n’s,

an obvious modification of our argument

shows $\bigcup_{n=1}^{\infty} A_n$ is countable and those (easier cases)