Suppose $f : A \to B$ is a bijection.

Suppose $H \subset B$. Then $f^{-1}(H)$ has two interpretations:

(1) $f^{-1}(H)$ is the inverse image of H under the function f.

(2) $f^{-1}(H)$ is the direct image of H under the function f^{-1}.
Exercise: Show these two sets are the same.
Well Ordering Property of Natural Numbers

Mathematical Induction

Well-Ordering property of \(\mathbb{N} \).

Every nonempty subset of \(\mathbb{N} \) has

a smallest element.
Principle of Mathematical Induction

Suppose $A \subseteq \mathbb{N}$ with the two following properties:

(i) $1 \in A$.

(ii) If $n \in A$, then $n + 1 \in A$.

Then $A = \mathbb{N}$.
Proof: Consider $\mathbb{N} - A = \{ n \in \mathbb{N} : n \notin A \}$

Wish to show that $\mathbb{N} - A = \emptyset$. Suppose $\mathbb{N} - A \neq \emptyset$.

We seek a \otimes.

\timestamp 06:37
By Well-Ordering property, we consider n_0, the smallest element of $\mathbb{N} - A$. Since $n_0 \notin A$ and $1 \in A$, we conclude $n_0 \neq 1$. Thus

$n_0 \neq 1 \in \mathbb{N}$. By the minimality of n_0, we have $n_0 - 1 \in A$. By assumption (ii),

$(n_0 - 1) + 1 = n_0 \in A$, \otimes.

Then $\mathbb{N} - A = \emptyset$, or $\mathbb{N} = A$.
Principle of Mathematical Induction II

Suppose for every \(n \in \mathbb{N} \) that \(P(n) \) is a statement that is either true or false.

Suppose

(i) \(P(1) \) is true.

(ii) If \(P(n) \) is true, then \(P(n + 1) \) is true.

Then \(P(n) \) is true for all \(n \).
Justify: Let $A = \{n : P(n) \text{ is true}\}$.

Then (i) $1 \in A$

(ii) If $n \in A$, then $n + 1 \in A$.

By our first version of Mathematical Induction, $A = \mathbb{N}$, i.e., $P(n)$ is true for all $n \in \mathbb{N}$.
Problem: Show that the sum of the first n odd integers is n^2.

or \[\sum_{k=1}^{n} (2k - 1) = n^2 \quad \leftarrow \quad \text{This statement is } P(n) \]

Proof: (base step) \[P(1) : \sum_{k=1}^{1} 2k - 1 = 1 \]

\[\text{or } 2(1) - 1 = 1^2 \quad \checkmark \]
(ii) induction step

Suppose \(P(n) \) is true, i.e.,

\[
\sum_{k=1}^{n} (2k - 1) = n^2
\]

Add \(2(n + 1) - 1 \) to both sides:

\[
\sum_{k=1}^{n+1} (2k - 1) = n^2 + 2(n + 1) - 1
\]

\[
= n^2 + 2n + 1 = (n + 1)^2
\]
This says $P(n + 1)$ is true. ✓

By Mathematical Induction, $P(n)$ is true for all n.
Problem II: Show $n^3 + 5n$ is divisible 6 for all $n \in \mathbb{N}$.

So $P(n)$ is: $n^3 + 5n$ is divisible 6.

base step: $1^3 + 5(1)$ is divisible 6 \checkmark
induction step: Suppose $P(n)$ is true.

Note $(n + 1)^3 + 5(n + 1) = n^3 + 3n^2 + 3n + 1 + 5n + 5$

$$= n^3 + 5n + 3n^2 + 3n + 2$$
\[n^3 + 5n + 3n(n+1) + 6 \]

- Divisible by 6 since \(P(n) \) is true
- Divisible by 6 since \(n(n+1) \) is even

\(P(n+1) \) is true. ✓

By Mathematical Induction,

\(P(n) \) is true for all \(n \in \mathbb{N} \).
Finite Sets

Countability

Def: \emptyset has 0 elements.

Def: Suppose $n \in \mathbb{N}$. A has n elements if there exists a bijection from

$\{1, 2, 3, \ldots, n\}$ onto A.
Infinite Sets

Def: A set is finite if it has \(n \) elements for some \(n \in \mathbb{N} \) or is \(\emptyset \).

Def: A set is infinite if it is not finite.
Countably Infinite Sets

Def: A set A is countably infinite if there exists a bijection $f : \mathbb{N} \rightarrow A$.

Def: A set A is countable if it is either finite or countably infinite.
Suppose A is countably infinite.

So a bijection $f : \mathbb{N} \rightarrow A$.

For each $n \in \mathbb{N}$, let $a_n = f(n)$.

So, $A = \{a_1, a_2, a_3, \ldots\}$ since f is a surjection.

So, the members of A can be arranged in such a list.
Bijection from a Countably Infinite Set

Remark: Suppose A is countably infinite.
Suppose $g : A \rightarrow B$ is a bijection. Then B is countably infinite.
Justify: Since A is countably infinite,

there exists a bijection $f : \mathbb{N} \rightarrow A$
Recall that a composition of bijection is a bijection. So, $g \circ f : \mathbb{N} \rightarrow B$

is a bijection and So B is countably infinite.
Lemma 1: If A is an infinite subset of \mathbb{N}, then A is countably infinite.

Proof: By Well-Ordering property, A has smallest element a_1.

Consider $A - \{a_1\}$. This is an infinite subset of \mathbb{N}.

By Well-Ordering, $A - \{a_1\}$ has a smallest member a_2.
Note $a_1 < a_2$ since a_1 was chosen in preference to a_2 at the previous. So a_2 is the second smallest member of A. to be continued.