Topics

Material covered in class lectures 2/13 to 3/3. This corresponds to (parts of) Sections 2.3-2.7 in Goodman.

1. Be able to give precise and correct definitions of the important concepts from these lectures. Know the basic examples and properties.
 - dihedral groups
 - kernel of a homomorphism
 - normal subgroup
 - (left/right) coset
 - equivalence relation, equivalence class, partition
 - quotient group

2. Know what our important theorems say, know how and when to use them:
 - Lagrange’s theorem
 - the homomorphism theorem

3. Be able to prove results proved in class such as:
 - $\text{Ker}(f) = \{e\}$ if and only if f is injective.
 - If $|G| = p$, where p is a prime, then $G \cong \mathbb{Z}_p$.
 - The operation on G/N is well-defined when N is a normal subgroup of G.
 - If \sim is an equivalence relation on X, then for any $x, y \in X$,
 (a) $x \sim y$ if and only if $[x] = [y]$.
 (b) Either $[x] = [y]$ or $[x] \cap [y] = \emptyset$.

Practice problems

Review homework problems. An old exam is available on the course canvas site. Here are a few further practice problems. Here are a few further practice problems.

Question 1 Consider the subgroups of D_5, $H = \langle r \rangle$ and $K = \langle j \rangle$. Are these normal subgroups?

Question 2 Let G be a group. Consider the relation on G defined by $g \sim h$ if there is an element $k \in G$ such that $g = khk^{-1}$. Show that \sim is an equivalence relations.

Question 3 Suppose that $d | n$. Show that $f : \mathbb{Z}_n \to \mathbb{Z}_d$ defined by $f([a]_n) = [a]_d$ is a well-defined homomorphisms. What is its kernel? What is $\mathbb{Z}_n/\text{Ker}(f)$?

Question 4 Is $\mathbb{Z}_9 \to \mathbb{Z}_5$, $[a]_9 \mapsto [a]_5$ well-defined?

Question 5 Is $SO_n \leq O_n$ normal? If so what is O_n/SO_n? Is $O_n \leq GL_n$ normal? If so, what is GL_n/O_n?

Question 6 Does the formula $aH \cdot bH = abH$ define a group structure on the set of cosets G/H for:
 (a) $G = S_3$, $H = \langle (1 2) \rangle$
 (b) $G = S_3$, $H = \langle (1 3 2) \rangle$
Question 7 How many elements does the subgroup of even permutations in S_n have?

Question 8 Show that \mathbb{Z}_{10} is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_5$.

Question 9 Lagrange’s theorem tells us that the only possible orders of elements of G are the divisors of $|G|$. Let d be a divisor of 18. Does \mathbb{Z}_{18} always have an element of order d? Does D_9 always have an element of order d?