Ring of polynomials over a field:

\[f = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} + a_n x^n \]

Say that:

\[\text{deg}(f) = n, \]

leading coefficient is \(a_n \)

\[\text{deg}(0) = -\infty \]

\[\text{deg}(1) = 0 \quad \text{if} \quad a \in K^\times = K \setminus \{0, 1\} \quad \text{(constant polynomial)} \]

Example:

\[f(x) = \pi^{15} x^3 + 2 x^2 - x + \sqrt{2} \]

\[\text{deg}(f) = 3 \]

leading coeff. is \(\pi^{15} \)

Proposition:

If \(f, g \in K[x] \)

\[\text{deg}(fg) = \text{deg}(f) + \text{deg}(g) \]

\[\text{deg}(f+g) \leq \max \{ \text{deg}(f), \text{deg}(g) \} \]

Proof:

\[f = \sum_{i=0}^{n} a_i x^i \quad g = \sum_{j=0}^{m} b_j x^j \]

\[fg = \sum_{i,j} a_i b_j x^{i+j} \quad \max \{n, m\} \]

\[\Rightarrow \text{deg}(fg) = n + m \]

\[f+g = \sum_{i} (a_i + b_i) x^i \]

\[\Rightarrow \text{deg}(f+g) = \max \{a, b\} \quad \Rightarrow \text{deg}(f+g) = \max \{n, m\} \]
Corollary: \((K\bar{K}^x)^x = K^x \)

Proof: \(K^x \subseteq (K\bar{K}^x)^x \)

If \(f(x) \in (K\bar{K}^x)^x \) then there exists \(f^{-1} \) such that

\[1 = f(x) \cdot f^{-1}(x) \]

\[\Rightarrow 0 = \deg(1) = \deg(f \cdot f^{-1}) = \deg(f) + \deg(f^{-1}) \]

since \(\deg > 0 \)

\[\Rightarrow \deg(f) = 0 \]

\[\Rightarrow f \in K \Rightarrow f \in K^x. \]

Def: Say that \(f \in K\bar{K}^x \) is irreducible if \(\deg(f) > 0 \) and whenever \(f = gh \) either \(g \in K^x \) or \(h \in K^x \).

Example: \(K = \mathbb{R} \)

\(f(x) = x^2 + 1 \) is irreducible:

if \(f = gh \) then \(\deg(g) > 0 \) or \(\deg(h) > 0 \) is not possible.

\(K = \mathbb{C} \), \(f(x) = x^2 + 1 \) has no real roots.
Theorem. Any \(f \in \mathbb{K}[x] \), \(\deg(f) > 0 \) is a product of irreducible polynomials, unique up to multiplication by a unit, that is:

\[f = p_1 \cdots p_k = q_1 \cdots q_l \]

with \(k = l \) and after reindexing \(P_1 = q_1 q_i \) for some \(q_i \in \mathbb{K}^* \).

Remark: Similar to prime factorization in \(\mathbb{Z} \), similar proof.

Proof:

existence: induction on degree.

If \(\deg(f) = 1 \), we're done since \(f \) must be irreducible.

Suppose true if \(f \in \mathbb{K}[x] \) and \(\deg(f) \leq n \).

Let \(g \in \mathbb{K}[x] \) have degree \(n+1 \).

If \(f \) is irreducible we're done otherwise.

\[g = f \cdot h \]

applying IH we can write \(f \cdot h \) as a product of irreducibles.

Uniqueness: almost, similar to case of primes in \(\mathbb{Z} \).
Def. If \(f, g \in K[x] \) say that \(h(y) \in \overline{K[x]} \)
such that \(fh = g \).

Proposition: \(\forall f, d \in K[x], \deg(d) \geq 0 \).

Then \(\exists q, r \in K[x] \) s.t.

\[
f = qd + r \quad \text{where} \quad deg(r) < deg(d).
\]

Proof: This is polynomial long division. \(\Box \)

Example: \(f(x) = 2x^4 + x^3 - 2x^2 + 2x + 1 \) \(K = \mathbb{Z}_3 \)
\[
d(x) = x^2 + 2
\]

\[
\begin{array}{r|cccc}
\multicolumn{2}{l}{2x^2 + x} \\
\hline
x^2 + 2 & 2x^4 + x^3 - 2x^2 + 2x + 1 \\
\hline
& 2x^4 + 2x^3 \\
\hline
& - (2x^4 + 2x^3) \\
\hline
& x^3 - 6x^2 + 2x + 1 \\
\hline
& - (x^3 + 2x) \\
\hline
& 1
\end{array}
\]

So \(2x^4 + x^3 - 2x^2 + 2x + 1 = (2x^2 + x)(x^2 + 2) + 1 \) in \(\mathbb{Z}_3[x] \)
Def. \(\forall f, g \in \mathbb{K}[x] \), \(\gcd(f, g) \) is the \(k \in \mathbb{K}[x] \) s.t.

\[\forall h_1, h_2, h_3 \in \mathbb{K}[x] \text{ such that } h_1 + h_2 = h_3 \text{ then } k \mid h_3 \text{ as well} \]

Theorem. \(\forall f, g \in \mathbb{K}[x] \) \(\exists h \) \(\gcd(f, g) \) exists and

\[\gcd(f, g) = sf + tg \text{ for some } s, t \in \mathbb{K}[x] \]

Proof. omitted: use long division (see 1.8.16 in text)

Def. For \(f, g \in \mathbb{K}[x] \), let

\[(f, g) \in \mathbb{K}[x] \]

be defined by

\[(f, g) = \{ sf + tg \mid s, t \in \mathbb{K}[x] \} \]

called ideal generated by \(f \) and \(g \)

Proposition. \((f, g) \in \mathbb{K}[x] \) is a subring (without \(1 \)) of \(\mathbb{K}[x] \)

and if \(h \in (f, g) \) then

\[h + (f, g) \subseteq (f, g) \]

Proof. exercise.
Proposition: If \(p \) is irreducible, and \(pf \equiv g \pmod{p} \), then \(p|f \) or \(p|g \).

Proof: If \(p \nmid f \) then since \(p \) is irreducible we must have \(\gcd(f, p) = 1 \).

\[\Rightarrow \quad \exists s, t \quad \text{s.t.} \quad 1 = sf + tp \]

\[\Rightarrow \quad g = sfg + tpg \]

\[p \text{ divides } pg \quad p \text{ divides } f \]

\[\Rightarrow \quad p \text{ divides } g \]

\[\square \]