Topics
The final will be comprehensive; it covers all topics discussed during the term. These correspond roughly to 1.7 - 1.8, 1.10, 2.1 - 2.7, 3.1 - 3.2, 5.1 - 5.2, 5.4, 6.1 - 6.4, in the text. Review the topics from the midterm review sheets. Additionally:

1. Be able to give precise and correct definitions of the important concepts from lectures. Know the basic examples and properties and relations between concepts. This includes:
 - Sylow subgroup
 - ring, ring with 1, commutative ring, field, group of units
 - irreducible polynomial, root of a polynomial
 - ideals, principal ideals, maximal ideal
 - quotient rings
 - field extensions

2. Know what our important theorems say, know how and when to use them:
 - Burnside’s Lemma
 - Class equation
 - Sylow’s theorems
 - Homomorphism theorem for rings (Theorem 6.3.4)

3. Know how to use the orbit stabilizer theorem and Burnside’s lemma for counting arguments.

4. Determine when R is a ring / ring with 1 / commutative ring / a field / etc...

5. Determine when $I \subseteq R$ is an ideal / principal ideal / maximal ideal.

6. Classify groups of order p, p^2, pq (p, q primes).

7. If K is a field and $p(x) \in K[x]$ is irreducible, construct a field F such that p has a root in F.

8. Be able to reproduce simple proofs from class such as Proposition 5.4.2, Propoistion 6.2.15, Proposition 6.2.29(c), Proposition 1.8.8, Proposition 1.8.22.
Practice problems

See homeworks, quizzes/workheets, and review sheets for the midterms. Here are a few further practice problems.

1. Let G be a finite group and consider the conjugation action on itself. Use Burnside’s lemma to compute the number of orbits:
 - $G = S_3$. (Confirm your answer by direct computation)
 - G an abelian group. (Is there another way to arrive at the answer?)

2. Let R be a commutative ring with 1 and $I \subseteq R$ an ideal. Show that the following are equivalent.
 (a) $I = R$
 (b) I contains a unit (i.e. $I \cap R^\times \neq \emptyset$)
 (c) $1 \in I$.

3. Which are fields? Why/why not?
 (a) \mathbb{Z}_{13}
 (b) \mathbb{Z}_{16}
 (c) $\mathbb{Z}_3[x]/(x^2 + 1)$
 (d) $\mathbb{Z}_5[x]/(x^2 + 1)$

4. Show that $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$. Can you find a field F such that $\mathbb{Q} \subseteq F$ and $x^2 - 2$ has a root in F? Is $x^2 - 2$ irreducible in $F[x]$?

5. Show that $x^2 - 2$ is not irreducible in $\mathbb{Z}_7[x]$.

6. If G is abelian and p is a prime, what are the possible values for n_p, the number of p-Sylow subgroups?

7. Suppose that G is a group of order 88. Let $H \leq G$ be an 11-Sylow subgroup and K a 2-sylow subgroup. Must H be normal? What about K? (In each case, give an argument for normality or provide a counterexample).

8. For which a is there a semi-direct product $\mathbb{Z}_5 \rtimes_a \mathbb{Z}_a$ (not isomorphic to the direct product)?

10. What is the normalizer of $\langle j \rangle \in D_4$?

11. Let $H \leq G$ be a subgroup. Is $N_G(H)$ normal in G? Is H normal in $N_G(H)$?