Quasilinearization, Enflo’s 2-roundness and Aleksandrov’s curvature

Igor G. Nikolaev

University of Illinois at Urbana-Champaign

September 2007
This is a joint work with Professor I.D. Berg.
This is a joint work with Professor I.D. Berg.

We characterize **Aleksandrov \mathbb{R}_0 domains**, also known as CAT (0)-spaces, by introducing a *quasilinearization* for an abstract metric space and by employing an analogy between quasilinearization and some characteristic properties of inner product spaces.
Introduction

- This is a joint work with Professor I.D. Berg.
- We characterize *Aleksandrov* \mathbb{R}_0 *domains*, also known as CAT (0)-*spaces*, by introducing a *quasilinearization* for an abstract metric space and by employing an analogy between quasilinearization and some characteristic properties of inner product spaces.
- \mathbb{R}_0 *domain* is a geodesically connected metric space of non-positive *Aleksandrov’s* curvature, where shortests depend continuously on their ends.
This is a joint work with Professor I.D. Berg.

We characterize Aleksandrov \mathbb{R}_0 domains, also known as CAT (0)-spaces, by introducing a quasilinearization for an abstract metric space and by employing an analogy between quasilinearization and some characteristic properties of inner product spaces.

\mathbb{R}_0 domain is a geodesically connected metric space of non-positive Aleksandrov’s curvature, where shortests depend continuously on their ends.

Aleksandrov’s definition of curvature ≤ 0 requires the notion of the upper angle and excess of a geodesic triangle.
Upper angle

Definition

$$\cos \gamma_{LN}(X, Y) = \frac{x^2 + y^2 - z^2}{2xy}.$$

Definition

$$\overline{\gamma}_{LN} = \lim_{X, Y \to P} \gamma_{LN}(X, Y).$$
Definition

Excess of the geodesic triangle $\mathcal{T} = ABC$ is defined by

$$\delta (\mathcal{T}) = \bar{\alpha} + \bar{\beta} + \bar{\gamma} - \pi.$$
Aleksandrov’s domain

Definition

- An \mathbb{R}_0 domain is a metric space with the following properties:

完
Definition

- An \mathcal{R}_0 domain is a metric space with the following properties:

 (i) Any two points in \mathcal{R}_0 can be joined by a shortest.
Aleksandrov’s domain

Definition

- An \mathbb{R}_0 domain is a metric space with the following properties:

 (i) Any two points in \mathbb{R}_0 can be joined by a shortest.

 (ii) Each triangle \mathcal{T} in \mathbb{R}_0 has non-positive excess, i.e.,

 $$\delta(\mathcal{T}) \leq 0,$$

 for every geodesic triangle \mathcal{T} in \mathbb{R}_0.

Definition

- An \mathcal{R}_0 domain is a metric space with the following properties:

 (i) Any two points in \mathcal{R}_0 can be joined by a shortest.

 (ii) Each triangle \mathcal{T} in \mathcal{R}_0 has non-positive excess, i.e.,

 \[
 \delta (\mathcal{T}) \leq 0,
 \]

 for every geodesic triangle \mathcal{T} in \mathcal{R}_0.

- An \mathcal{R}_0 domain need not be a manifold and its metric need not be given by a smooth metric tensor.
Examples

Quasilinearization and curvature

\(\mathbb{R}_0 \) domain

Example

Quasilinearization

Quasi-inner product

\(\cos q \)

Q-I product and \(\cos q \)

Four point condition

Main result

Complete domains

2-roundness

2-roundness

Theorem

Gromov's problem

Curvature problem

Notation

Solution

Ptolemaic spaces

Bibliography

(UIUC, USA)
Examples

\[S : z = \sqrt{|xy|}. \]

- \(S \) has zero curvature everywhere except for the origin, where it is \(-\infty\); \(S \) is a domain \(\mathbb{R}_0 \).
Let \mathcal{M} be a non-empty set. Each ordered pair $(A, B) \in \mathcal{M} \times \mathcal{M}$ is called a *bound vector*. We will keep the notation \overrightarrow{AB}, or \overrightarrow{u}, for each bound vector \overrightarrow{AB}; the point A is called the *tail* and the point B is called the *head* of the bound vector \overrightarrow{AB}.
The sum of two bound vectors \(\vec{u} \) and \(\vec{v} \) is defined if the head of \(\vec{u} \) coincides with the tail of \(\vec{v} \): if \(\vec{u} = \overrightarrow{AB} \) and \(\vec{v} = \overrightarrow{BC} \), then \(\vec{u} + \vec{v} = \overrightarrow{AC} \). An ordered pair of two bound vectors is called *admissible* if their sum is well defined.
A *semimetric space* is a metric space without the triangle inequality axiom.

Definition
A *semimetric space* is a metric space without the triangle inequality axiom.

Definition

A *quasi-inner product* on a semimetric space \((\mathcal{M}, \rho)\) is a function \(\langle \ast, \ast \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}\) satisfying the following conditions:
A *semimetric space* is a metric space without the triangle inequality axiom.

Definition

- A *quasi-inner product* on a semimetric space (\mathcal{M}, ρ) is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:

 (i) $\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)$.

- A *quasi-inner product* is a function $\langle *, * \rangle : (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \to \mathbb{R}$ satisfying the following conditions:
A *semimetric space* is a metric space without the triangle inequality axiom.

Definition

- A *quasi-inner product* on a semimetric space \((M, \rho)\) is a function \(\langle *, * \rangle : (M \times M) \times (M \times M) \to \mathbb{R}\) satisfying the following conditions:

 (i) \(\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)\).

 (ii) \(\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle\).
A *semimetric space* is a metric space without the triangle inequality axiom.

Definition

A *quasi-inner product* on a semimetric space \((\mathcal{M}, \rho)\) is a function \(\langle \cdot, \cdot \rangle: (\mathcal{M} \times \mathcal{M}) \times (\mathcal{M} \times \mathcal{M}) \rightarrow \mathbb{R}\) satisfying the following conditions:

(i) \(\langle \vec{u}, \vec{u} \rangle = \rho^2 (P, Q)\).

(ii) \(\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle\).

(iii) \(\langle -\vec{u}, \vec{v} \rangle = -\langle \vec{u}, \vec{v} \rangle\).
Quasi-inner product

- A **semimetric space** is a metric space without the triangle inequality axiom.

Definition

- A **quasi-inner product** on a semimetric space \((M, \rho)\) is a function \(\langle *, * \rangle : (M \times M) \times (M \times M) \rightarrow \mathbb{R}\) satisfying the following conditions:

 (i) \(\langle \overrightarrow{u}, \overrightarrow{u} \rangle = \rho^2 (P, Q)\).

 (ii) \(\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \langle \overrightarrow{v}, \overrightarrow{u} \rangle\).

 (iii) \(\langle - \overrightarrow{u}, \overrightarrow{v} \rangle = - \langle \overrightarrow{u}, \overrightarrow{v} \rangle\).

 (iv) \(\langle \overrightarrow{u}, \overrightarrow{v} + \overrightarrow{w} \rangle = \langle \overrightarrow{u}, \overrightarrow{v} \rangle + \langle \overrightarrow{u}, \overrightarrow{w} \rangle\) if the pair \((\overrightarrow{v}, \overrightarrow{w})\) is admissible.
The quadrilateral cosine

\[\cos q \left(\overrightarrow{PX}, \overrightarrow{QY} \right) = \frac{f^2 + g^2 - a^2 - b^2}{2xy}. \]
Lemma

Let \((\mathcal{M}, \rho)\) be a semimetric space with a quasi-inner product \(\langle *, * \rangle\) on it.
Lemma

- Let \((M, \rho)\) be a semimetric space with a quasi-inner product \(\langle *, * \rangle\) on it.
- Then, for every pair of bound vectors \(\overrightarrow{u} = PX\) and \(\overrightarrow{v} = QY\) in \(M\),
Lemma

Let \((\mathcal{M}, \rho)\) be a semimetric space with a quasi-inner product \(\langle *, * \rangle\) on it.

Then, for every pair of bound vectors \(\overrightarrow{u} = \overrightarrow{PX}\) and \(\overrightarrow{v} = \overrightarrow{QY}\) in \(\mathcal{M}\),

\[
\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \| \overrightarrow{u} \| \| \overrightarrow{v} \| \cos q (\overrightarrow{u}, \overrightarrow{v}),
\]

if \(\| \overrightarrow{u} \|\) and \(\| \overrightarrow{v} \|\) are positive and
Lemma

- Let \((\mathcal{M}, \rho)\) be a semimetric space with a quasi-inner product \(\langle *, * \rangle\) on it.
- Then, for every pair of bound vectors \(\overrightarrow{u} = \overrightarrow{PX}\) and \(\overrightarrow{v} = \overrightarrow{QY}\) in \(\mathcal{M}\),
 \[
 \langle \overrightarrow{u}, \overrightarrow{v} \rangle = \| \overrightarrow{u} \| \| \overrightarrow{v} \| \cos_q (\overrightarrow{u}, \overrightarrow{v}),
 \]
 if \(\| \overrightarrow{u} \|\) and \(\| \overrightarrow{v} \|\) are positive and
 \[
 \langle \overrightarrow{u}, \overrightarrow{v} \rangle = 0, \text{ if either } \| \overrightarrow{u} \| \text{ or } \| \overrightarrow{v} \| \text{ vanishes.}
 \]
Lemma

Let \((\mathcal{M}, \rho)\) be a semimetric space with a quasi-inner product \(\langle *, * \rangle\) on it.

Then, for every pair of bound vectors \(\overrightarrow{u} = \overrightarrow{PX}\) and \(\overrightarrow{v} = \overrightarrow{QY}\) in \(\mathcal{M}\),

\[
\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \| \overrightarrow{u} \| \| \overrightarrow{v} \| \cosq(\overrightarrow{u}, \overrightarrow{v}),
\]

if \(\| \overrightarrow{u} \|\) and \(\| \overrightarrow{v} \|\) are positive and

\[
\langle \overrightarrow{u}, \overrightarrow{v} \rangle = 0, \text{ if either } \| \overrightarrow{u} \| \text{ or } \| \overrightarrow{v} \| \text{ vanishes.}
\]

In addition, the cosq-product given by the foregoing formula is a quasi-inner product.
A *quasi-inner product space* is a semimetric space with a quasi-inner product on it.
The Cauchy-Schwarz inequality condition

- A quasi-inner product space is a semimetric space with a quasi-inner product on it.
- Quasilinearization for a semimetric space \((\mathcal{M}, \rho)\) is the quasi-inner product space of all bound vectors of \(\mathcal{M}\).
The Cauchy-Schwarz inequality condition

- A quasi-inner product space is a semimetric space with a quasi-inner product on it.
- Quasilinearization for a semimetric space \((\mathcal{M}, \rho)\) is the quasi-inner product space of all bound vectors of \(\mathcal{M}\).
- Quasilinearization enables us to formulate a Cauchy-Schwarz inequality which forces the upper curvature bound of zero.
A *quasi-inner product space* is a semimetric space with a quasi-inner product on it.

Quasilinearization for a semimetric space \((\mathcal{M}, \rho)\) is the quasi-inner product space of all bound vectors of \(\mathcal{M}\).

Quasilinearization enables us to formulate a Cauchy-Schwarz inequality which forces the upper curvature bound of zero.

The Cauchy-Schwarz inequality condition:

\[|\langle \overrightarrow{AB}, \overrightarrow{CD} \rangle| \leq \| \overrightarrow{AB} \| \| \overrightarrow{CD} \|, \]

for every quadruple \(\{A, B, C, D\} \subseteq \mathcal{M}\).
The four point condition

- The Cauchy-Schwarz inequality condition is equivalent to $\left| \cos q \left(\vec{AB}, \vec{CD} \right) \right| \leq 1$, for every pair of distinct points (A, B) and (C, D) in \mathcal{M}.

The Cauchy-Schwarz inequality condition is equivalent to $\left| \cos q \left(\vec{AB}, \vec{CD} \right) \right| \leq 1$, for every pair of distinct points (A, B) and (C, D) in \mathcal{M}. Hence, the following condition is equivalent to the Cauchy-Scwarz inequality condition:

The four point condition:
The four point condition

- The Cauchy-Schwarz inequality condition is equivalent to $|\cos q(\overrightarrow{AB}, \overrightarrow{CD})| \leq 1$, for every pair of distinct points (A, B) and (C, D) in \mathcal{M}.

- We readily see that $\cos q(\overrightarrow{AB}, \overrightarrow{CD}) = -\cos q(\overrightarrow{BA}, \overrightarrow{CD})$. Hence, the following condition is equivalent to the Cauchy-Schwarz inequality condition:
The four point condition

- The Cauchy-Schwarz inequality condition is equivalent to $|\cos q (\overrightarrow{AB}, \overrightarrow{CD})| \leq 1$, for every pair of distinct points (A, B) and (C, D) in \mathcal{M}.

- We readily see that
 $\cos q (\overrightarrow{AB}, \overrightarrow{CD}) = -\cos q (\overrightarrow{BA}, \overrightarrow{CD})$. Hence, the following condition is equivalent to the Cauchy-Schwarz inequality condition:

- The four point $\cos q$ condition:
 $\cos q (\overrightarrow{AB}, \overrightarrow{CD}) \leq 1$, for every pair of distinct points (A, B) and (C, D) in \mathcal{M}.
Main result

- Recall that a metric space is *geodesically connected* if any pair of its points can be joined by a shortest.

Theorem
Main result

- Recall that a metric space is *geodesically connected* if any pair of its points can be joined by a shortest.

Theorem

- *A geodesically connected metric space is an \mathcal{R}_0 domain if and only if it satisfies the four point \cosq condition.*
Main result

- Recall that a metric space is *geodesically connected* if any pair of its points can be joined by a shortest.

Theorem

- A *geodesically connected metric space is an* \mathcal{R}_0 *domain if and only if it satisfies the four point* $\cos q$ *condition.

- If for a quadruple $\{A, B, C, D\}$, $A \neq B$, $C \neq D$, in a geodesically connected metric space with the four point $\cos q$ condition, $\cos q\left(\overrightarrow{AB}, \overrightarrow{CD}\right) = 1$, then the geodesic convex hull of the set $\{A, B, C, D\}$ is either isometric to a trapezoid in the Euclidean plane or a segment of straight line.
Cauchy sequences in a semimetric space are defined in the same way as in a metric space.

Definition
Cauchy sequences in a semimetric space are defined in the same way as in a metric space.

It is well known that a convergent sequence in a semimetric space need not be a Cauchy sequence.

Definition
Cauchy condition and weak convexity in a semimetric space

- Cauchy sequences in a semimetric space are defined in the same way as in a metric space.
- It is well known that a convergent sequence in a semimetric space need not be a Cauchy sequence.

Definition

- A semimetric space is said to be *weakly convex* if, for every $A, B \in \mathcal{M}$ there is λ, $0 < \lambda < 1$, such that, for every $\varepsilon > 0$, there is $C_\varepsilon \in \mathcal{M}$ satisfying the inequalities
 \[|\rho (A, C_\varepsilon) - \lambda \rho (A, B)| < \varepsilon \quad \text{and} \quad |\rho (B, C_\varepsilon) - (1 - \lambda) \rho (A, B)| < \varepsilon. \]
Characterization of complete Aleksandrov domains

Theorem

- A semimetric space (M, ρ) is isometric to a complete \mathcal{R}_0 domain if and only if the following conditions are satisfied:
Characterization of complete Aleksandrov domains

Theorem

- A semimetric space (\mathcal{M}, ρ) is isometric to a complete \mathcal{R}_0 domain if and only if the following conditions are satisfied:

(i) (\mathcal{M}, ρ) is weakly convex.
Characterization of complete Aleksandrov domains

Theorem

A semimetric space \((M, \rho)\) is isometric to a complete \(\mathbb{R}_0\) domain if and only if the following conditions are satisfied:

(i) \((M, \rho)\) is weakly convex.

(ii) Each Cauchy sequence in \((M, \rho)\) has a limit.
Characterization of complete Aleksandrov domains

Theorem

- A semimetric space \((M, \rho)\) is isometric to a complete \(\mathcal{R}_0\) domain if and only if the following conditions are satisfied:

(i) \((M, \rho)\) is weakly convex.

(ii) Each Cauchy sequence in \((M, \rho)\) has a limit.

(iii) \((M, \rho)\) satisfies the four point \(\cos q\) condition.
Enflows roundness condition

Definition

- A metric space \((\mathcal{M}, \rho)\) is said to have *roundedness* \(p\) if \(p\) is the supremum of the set of \(q\) with the property:
Enflows roundness condition

Definition

- A metric space \((\mathcal{M}, \rho)\) is said to have roundedness \(p\) if \(p\) is the supremum of the set of \(q\) with the property:

- for every quadruple of points \(Q = \{P_1, P_2, P_3, P_4\} \subset \mathcal{M}\),

\[
\rho_q(P_1, P_3) + \rho_q(P_2, P_4) + \rho_q(P_3, P_4) + \rho_q(P_4, P_1) \geq \rho_q(P_1, P_2) + \rho_q(P_2, P_3).
\]
Definition

- A metric space \((\mathcal{M}, \rho)\) is said to have roundedness \(p\) if \(p\) is the supremum of the set of \(q\) with the property:
 - for every quadruple of points \(Q = \{P_1, P_2, P_3, P_4\} \subset \mathcal{M}\),

\[
\rho^q (P_1, P_3) + \rho^q (P_2, P_4)
\leq \rho^q (P_1, P_2) + \rho^q (P_2, P_3)
+ \rho^q (P_3, P_4) + \rho^q (P_4, P_1).
\]
P. Enflo applied the notion of p-roundness to the study of uniformly continuous homeomorphisms between Banach spaces.
Remarks

- P. Enflo applied the notion of p-roundness to the study of uniformly continuous homeomorphisms between Banach spaces.
- By the triangle inequality the inequality in the definition of p-roundness holds for every quadruple if $q = 1$.
P. Enflo applied the notion of p-roundness to the study of uniformly continuous homeomorphisms between Banach spaces.

By the triangle inequality the inequality in the definition of p-roundness holds for every quadruple if $q = 1$.

It is known, that for a geodesically connected metric space, the same inequality does not hold for every quadruple if $q > 2$.
P. Enflo applied the notion of \(p \)-roundness to the study of uniformly continuous homeomorphisms between Banach spaces.

By the triangle inequality the inequality in the definition of \(p \)-roundness holds for every quadruple if \(q = 1 \).

It is known, that for a geodesically connected metric space, the same inequality does not hold for every quadruple if \(q > 2 \).

Hence, for a geodesically connected metric space, \(p \) must satisfy the inequality \(1 \leq p \leq 2 \).
Enflo's two-roundness condition

For every quadruple \(Q = \{P_1, P_2, P_3, P_4\} \),

\[
\rho^2(P_1, P_3) + \rho^2(P_2, P_4) + \rho^2(P_1, P_2) + \rho^2(P_2, P_3).
\]

In \(\mathbb{R}^2 \), this inequality is due to L. Euler (1750).
For every quadruple \(Q = \{ P_1, P_2, P_3, P_4 \} \),
\[
\rho^2 (P_1, P_3) + \rho^2 (P_2, P_4) \leq \rho^2 (P_1, P_2) + \rho^2 (P_2, P_3) + \rho^2 (P_3, P_4) + \rho^2 (P_4, P_1).
\]
Enflo’s two-roundness condition

For every quadruple \(Q = \{P_1, P_2, P_3, P_4\} \),
\[
\rho^2(P_1, P_3) + \rho^2(P_2, P_4) \leq \rho^2(P_1, P_2) + \rho^2(P_2, P_3) + \rho^2(P_3, P_4) + \rho^2(P_4, P_1).
\]
In \(\mathbb{R}^2 \), this inequality is due to L. Euler (1750).
Enflo’s roundness condition and Aleksandrov domains

Theorem

- A geodesically connected metric space is an \mathcal{R}_0 domain if and only if it satisfies Enflo’s 2-roundness condition.
Enflo’s roundness condition and Aleksandrov domains

Theorem

- A geodesically connected metric space is an R_0 domain if and only if it satisfies Enflo’s 2-roundness condition.

- In addition, if (\mathcal{M}, ρ) is a geodesically connected metric space with Enflo’s 2-roundness condition and $Q = \{A, B, C, D\}$ is a quadruple of distinct points in \mathcal{M} for which $\rho^2(A, C) + \rho^2(B, D) = \rho^2(A, B) + \rho^2(B, C) + \rho^2(C, D) + \rho^2(A, D)$, then the geodesic convex hull of the set $\{A, B, C, D\}$ is either isometric to a parallelogram in the Euclidean plane or a segment of straight line.
Let $r \in \mathbb{N}$ and M_r denote the set of all symmetric $r \times r$ matrices with zero diagonal entries and non-negative entries otherwise.
Let \(r \in \mathbb{N} \) and \(M_r \) denote the set of all symmetric \(r \times r \) matrices with zero diagonal entries and non-negative entries otherwise.

Let \((\mathcal{X}, d)\) be a semimetric space. Then \(K_r(\mathcal{X}) \) consists of all matrices \(A = (a_{ij}) \) in \(M_r \) such that for every \(A \in K_r(\mathcal{X}) \) there is an \(r \)-tuple \(\{P_1, P_2, ..., P_r\} \subseteq \mathcal{X} \) satisfying \(a_{ij} = d(P_i, P_j) \), \(i, j = 1, 2, ..., r \).
K-curvature classes

- Let \(r \in \mathbb{N} \) and \(M_r \) denote the set of all symmetric \(r \times r \) matrices with zero diagonal entries and non-negative entries otherwise.

- Let \((\mathcal{X}, d) \) be a semimetric space. Then \(K_r (\mathcal{X}) \) consists of all matrices \(A = (a_{ij}) \) in \(M_r \) such that for every \(A \in K_r (\mathcal{X}) \) there is an \(r \)-tuple \(\{P_1, P_2, ..., P_r\} \subseteq \mathcal{X} \) satisfying \(a_{ij} = d (P_i, P_j) \), \(i, j = 1, 2, ..., r \).

- A subset \(\mathcal{K} \subseteq M_r \) defines Gromov's (global) \(\mathcal{K} \)-curvature class as follows:
Let \(r \in \mathbb{N} \) and \(M_r \) denote the set of all symmetric \(r \times r \) matrices with zero diagonal entries and non-negative entries otherwise.

Let \((\mathcal{X}, d)\) be a semimetric space. Then \(K_r (\mathcal{X}) \) consists of all matrices \(A = (a_{ij}) \) in \(M_r \) such that for every \(A \in K_r (\mathcal{X}) \) there is an \(r \)-tuple \(\{P_1, P_2, \ldots, P_r\} \subseteq \mathcal{X} \) satisfying \(a_{ij} = d (P_i, P_j) \), \(i, j = 1, 2, \ldots, r \).

A subset \(\mathcal{K} \subseteq M_r \) defines Gromov’s (global) \(\mathcal{K} \)-curvature class as follows:

Gromov’s \(\mathcal{K} \)-curvature class consists of all \((\mathcal{X}, d)\) such that \(K_r (\mathcal{X}) \subseteq \mathcal{K} \).
Gromov’s curvature problem is the problem of a meaningful geometric description of \mathcal{K}-curvature classes:
Gromov’s curvature problem is the problem of a meaningful geometric description of \mathcal{K}-curvature classes:

Gromov’s curvature problem is the problem of a meaningful geometric description of \mathcal{K}-curvature classes:

We will need the following notations:
Define the following two classes \mathcal{K} of subspaces of M_4:

$$
\mathcal{K}_{\cosq} = \{ (a_{ij})_{i,j=1,2,3,4} \in M_4 | a_{21}3 + a_{22}4 + a_{23}2 + a_{24}1 + a_{34}2 \}.
$$

$$
\mathcal{K}_{\cosq} = \{ (a_{ij})_{i,j=1,2,3,4} \in M_4 | a_{21}3 + a_{22}4 + a_{23}2 + a_{24}1 + a_{34}2 \}.
$$
Notation

- Define the following two classes \mathcal{K} of subspaces of M_4:

$$\mathcal{K}_{\cosq} = \left\{ (a_{ij})_{i,j=1,2,3,4} \in M_4 \mid a_{13}^2 + a_{24}^2 \leq a_{23}^2 + a_{14}^2 + 2a_{12}a_{34} \right\}.$$
Notation

- Define the following two classes \mathcal{K} of subspaces of M_4:

$$\mathcal{K}_{\cos q} = \left\{ (a_{ij})_{i,j=1,2,3,4} \in M_4 \mid a_{13}^2 + a_{24}^2 \leq a_{23}^2 + a_{14}^2 + 2a_{12}a_{34} \right\}.$$

$$\mathcal{K}_E = \left\{ (a_{ij})_{i,j=1,2,3,4} \in M_4 \mid a_{13}^2 + a_{24}^2 \leq a_{23}^2 + a_{14}^2 + a_{12}^2 + a_{34}^2 \right\}.$$
Let \mathcal{M}_G denote the set of all geodesically connected metric spaces.
Let \mathcal{M}_G denote the set of all geodesically connected metric spaces.

Let \mathcal{M}_S denote the set of all semimetric spaces satisfying conditions:
Let \mathcal{M}_G denote the set of all geodesically connected metric spaces.

Let \mathcal{M}_S denote the set of all semimetric spaces satisfying conditions:

(i) (\mathcal{M}, ρ) is weakly convex.
Let \mathcal{M}_G denote the set of all geodesically connected metric spaces.

Let \mathcal{M}_S denote the set of all semimetric spaces satisfying conditions:

(i) (\mathcal{M}, ρ) is weakly convex.

(ii) Each Cauchy sequence in (\mathcal{M}, ρ) has a limit.
Notation

- Let \mathcal{M}_G denote the set of all geodesically connected metric spaces.
- Let \mathcal{M}_S denote the set of all semimetric spaces satisfying conditions:

 (i) (\mathcal{M}, ρ) is weakly convex.

 (ii) Each Cauchy sequence in (\mathcal{M}, ρ) has a limit.

- The following theorem gives a complete solution of the Gromov curvature problem in the context of Aleksandrov spaces of non-positive curvature.
Solution of Gromov’s curvature problem

Theorem

\((\mathcal{X}, \rho) \in \mathcal{M}_G\) is in the \(\mathcal{K}_{\cos q}\)-curvature class if and only if \((\mathcal{X}, \rho)\) is isometric to an \(\mathcal{R}_0\) domain.
Solution of Gromov’s curvature problem

Theorem

- $(X, \rho) \in \mathcal{M}_G$ is in the $\mathcal{K}_{\cos q}$-curvature class if and only if (X, ρ) is isometric to an \mathcal{R}_0 domain.
- $(X, \rho) \in \mathcal{M}_G$ is in the \mathcal{K}_E-curvature class if and only if (X, ρ) is isometric to an \mathcal{R}_0 domain.
Solution of Gromov’s curvature problem

Theorem

1. \((X, \rho) \in \mathcal{M}_G\) is in the \(\mathcal{K}_{\cos q}\)-curvature class if and only if \((X, \rho)\) is isometric to an \(\mathbb{R}_0\) domain.

2. \((X, \rho) \in \mathcal{M}_G\) is in the \(\mathcal{K}_E\)-curvature class if and only if \((X, \rho)\) is isometric to an \(\mathbb{R}_0\) domain.

3. \((X, \rho) \in \mathcal{M}_G\) is in the \(\mathcal{K}_{\cos q}\)-curvature class if and only if \((X, \rho)\) is isometric to a complete \(\mathbb{R}_0\) domain.
A semimetric space \((\mathcal{M}, \rho)\) is called *Ptolemaic* if for each quadruple \(\{P_1, P_2, P_3, P_4\} \subset \mathcal{M}\),

\[
\rho(P_1, P_4) \rho(P_2, P_3) \leq \rho(P_1, P_2) \rho(P_3, P_4) + \rho(P_1, P_3) \rho(P_2, P_4).
\]
Ptolemaic spaces

- A semimetric space \((\mathcal{M}, \rho)\) is called \textit{Ptolemaic} if for each quadruple \(\{P_1, P_2, P_3, P_4\} \subset \mathcal{M},\)

\[
\rho(P_1, P_4) \rho(P_2, P_3) \leq \rho(P_1, P_2) \rho(P_3, P_4) + \rho(P_1, P_3) \rho(P_2, P_4).
\]

- In 1952, I.J. Shoenberg has shown that a semi-normed space is Ptolemaic if and only if it is an inner product space.
Ptolemaic spaces

- A semimetric space \((M, \rho)\) is called **Ptolemaic** if for each quadruple \(\{P_1, P_2, P_3, P_4\} \subset M\),

 \[
 \rho(P_1, P_4) \rho(P_2, P_3) \leq \rho(P_1, P_2) \rho(P_3, P_4) \\
 + \rho(P_1, P_3) \rho(P_2, P_4).
 \]

- In 1952, I.J. Shoenberg has shown that a semi-normed space is Ptolemaic if and only if it is an inner product space.

- In 1963, D.C. Kay showed that a Riemannian manifold is non-positively curved if and only if it is locally Ptolemaic.
Ptolemaic spaces

- A semimetric space (\mathcal{M}, ρ) is called \textit{Ptolemaic} if for each quadruple $\{P_1, P_2, P_3, P_4\} \subset \mathcal{M}$,

\[
\rho(P_1, P_4) \rho(P_2, P_3) \leq \rho(P_1, P_2) \rho(P_3, P_4) + \rho(P_1, P_3) \rho(P_2, P_4).
\]

- In 1952, I.J. Shoenberg has shown that a semi-normed space is Ptolemaic if and only if it is an inner product space.

- In 1963, D.C. Kay showed that a Riemannian manifold is non-positively curved if and only if it is locally Ptolemaic

We prove: An \mathcal{R}_0 domain is Ptolemaic.
Bibliography

