Matemáticas por Estudiantes

Mecánica Cuántica y Teoría de Grafos.

Idea: Unificar un problema enumerativo en teoría de grafos con la dinámica de estados cuánticos.

*Problema en combinatoria

Función Generatriz.

Def.: Una secuencia \{a_0, a_1, \ldots \} tiene función gen. \(F(x) \) si la expansión de Taylor de \(F(x) \) en \(x = 0 \) es \(F(x) = \sum_{k=0}^{\infty} a_k x^k \).

*Ejemplos: \{1, 1, 1, \ldots \} \quad F(x) = \frac{1}{1-x}

\{1, 1, 2, 3, 5, 8, \ldots \} \quad F(x) = \frac{1}{1-x-x^2}

Problemas enumerativos más complicados tienen funciones interesantes:

\{0, 0, 2, 2, 6, 10, 22, \ldots \} \quad F(x) = ?

- Número de caminos cerrados que inician y terminan en el vértice de un triángulo.

\[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 0 & \\
2 & 2 & 2 \\
3 & 2 & \\
\end{array} \]

Fórmula generadora: Matriz de adyacencia!

Funcion generadora! Matriz de adjacencia!
Des: \[A_{ij}^p = \begin{cases} 1 & \text{si } i \neq j \text{ (i,j) es una arista} \\ 0 & \text{d.i.c.} \end{cases} \]

Ej. \[A^p = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \]

Teorema: \[C^k(i,j) = A^k(i,j) \]

Des: \[Z^n(t) = \exp(A^n t) = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!} \]

Cor: \[Z^n(t)(i,j) = \sum_{k=0}^{\infty} \frac{C^k(i,j) t^k}{k!} \]

Fórmula cerrada: Diagonalización de \(A^n \).

Problema en Física: Evolución de estados cuánticos:

- Partícula clásica bajo un potencial.
 \[L(x, i, t) = \frac{1}{2} m \dot{x}^2 - V(x) \]
 \(x \in \mathbb{R}^n \). Espacio de configuración.

Quantización canónica.

\[C \rightarrow H \]

Espacio de Estados cuánticos del sistema.

\[\mathcal{H} = L^2(\mathbb{R}^n) \]

\[\langle \mathcal{H} \rangle \]

Dinámica clásica \rightarrow Dinámica cuántica

Ecuación de Schrödinger:
\[i\hbar \frac{\partial \psi(x, t)}{\partial t} = \mathcal{H} \psi \]

Principio de mínima acción
\[\delta S = 0 \]

\[\mathcal{H} \] es el operador de Schrödinger
\[-\hbar^2 \Delta + V(x) \]
Δ es el Laplaciano. \[\Delta f = \sum_{k=0}^{\infty} \frac{\partial^2 f}{\partial x_k^2} \]

Mecánica cuántica en grafos:

\[C \rightarrow \Gamma \] una partícula cuántica confinada graso \(\Gamma \).

\[H \rightarrow \mathbb{R}^{|\Gamma|} \] \(|\Gamma|\) es el número de vértices de \(\Gamma \).

\[\Delta \rightarrow \Delta _\Gamma \] graso Laplaciano:

\[
\begin{align*}
\text{deg}(i) &:= \text{# de vecinos del } i \quad \text{si } i = 3 \\
\Delta _\Gamma (i,i) &:= -\Delta _\Gamma (i,i) \quad \text{si } i \neq 3
\end{align*}
\]

\[E_i: \Gamma = \Delta _\Gamma \Rightarrow \Delta _\Gamma = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \]

- **Evolución de estados cuánticos** (Partícula libre i no pol)

Ecuación de Schrödinger:

\[
\frac{i\hbar}{2m} \frac{d}{dt} \psi = \hat{H} \psi \quad \text{Una ecuación ordinaria}.
\]

\[\Psi_{t_2} = \exp (-\Delta _\Gamma (t_2,t_1)) \Psi_{t_1}. \]

La función generatriz de caminos: \(C \)

- Si el graso es regular: \(\Delta _\Gamma = k.I - A _\Gamma \)

\[U (i,i)_t = C^{-k.t} Z (i,i)_t. \]

- Si el graso no es regular:

(1). Encontrar una expresión directa entre \(\exp(-\Delta t) \)
\[\exp(x+y) \neq \exp(x) \cdot \exp(y) \quad \text{en general} \]

Formulæ Baker–Campbell–Hausdorff (para la exponencial).

- **Opción 2:** Redefinir caminos en el grupo G de tal manera que $U(i,j)$ es la función generaliza de contorno de caminos.

- (Mnëv–del-Vecchio): $\exp(-\Delta t)$ cuenta caminos orientados y extendidos.

 \[
 \begin{array}{ccc}
 B & A \\
 1 & C & Z
 \end{array}
 \quad \text{Convenional:} \quad 1 \rightarrow C \rightarrow Z \rightarrow \quad \text{Extendido:} \quad 1 \rightarrow C \rightarrow A \rightarrow \quad B \\
 \]

 Versión supersimétrica.

- Estados cuánticos: $H^+ \oplus H^-$

 \[
 \begin{array}{ccc}
 1 & 0 \\
 1 & 1
 \end{array}
 \quad \begin{array}{ccc}
 0 & 1 \\
 0 & 0
 \end{array}
 \quad \text{impares}
 \]

 $\mathbb{R}^{1 \text{W}} \oplus \mathbb{R}^{1 \text{A}}$.

 Dinámica cuántica: superlaplaciano

 \[\Delta = \Delta^+ \oplus \Delta^- \]

 convencional

 \[\text{aplacido\ ¡par.} \]

- Evolución de estados \(\partial \Psi / \partial t = -\Delta \Psi \)

- Teoría

 \[\Psi_t = \exp(-\Delta t) \Psi_0 \]

 Topología del grupo:

 \[\ker \Delta^+ \cong \text{H}^0(G) \]

 co \(\ker (\Delta^+) \cong \text{H}^1(G) \cong \ker (\Delta^-) \).
Desigualdades de Morse:
\[b_i = \dim H^i(x) \]
\[C_i = \text{Número de puntos críticos de una función de Morse en con índice } i. \]

Teo. (Morse): \[b_i \leq C_i. \]

- En grafos, \(b_0 = \# \text{ componentes conexas} \)
- \(b_1 = \# \text{ de "disentey" ciclos}. \)

Usando susy, mecánica cuántica en grafos es posible probar desigualdades de Morse.

![Diagrama de grafos con desigualdades](image)

- \(b_0 = 1 \)
- \(b_1 = 2 \)
- \(\text{En grafos} \)

![Diagrama de función de Morse](image)

- \(b_0 = 1 \)
- \(b_1 = 0 \)

Función de Morse

- \(C_0 = \)
- \(C_1 = \)